
IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTATIONAL INTELLIGENCE, VOL. 8, NO. 1, FEBRUARY 2024 377

A Surrogate-Assisted Evolutionary Algorithm for
Seeking Multiple Solutions of Expensive

Multimodal Optimization Problems
Jing-Yu Ji , Zusheng Tan , Sanyou Zeng , Eric W. K. See-To , and Man-Leung Wong , Member, IEEE

Abstract—Surrogate-assisted evolutionary algorithms for ex-
pensive optimization problems have gained considerable attention
in recent years. In many real-world optimization problems, we
may face expensive optimization problems with multiple optimal
solutions. Locating multiple optima for such expensive problems is
qualitatively challenging. This study proposes a surrogate-assisted
differential evolution based on region decomposition to seek multi-
ple optima for expensive multimodal optimization problems. In this
study, we have designed three major components: 1) the adaptive
region decomposition, 2) the multilayer perceptron-based global
surrogate, and 3) the self-adaptive gradient descent-based local
search. First, the improved adaptive region decomposition detects
promising subregions at the beginning phase, and continuously
discards inferior subregions successively. Second, the multilayer
perceptron-based surrogate and self-adaptive gradient-based mu-
tation work in a collaborative manner on distinct sub-populations
to seek multiple optimal solutions. Overall, an attempt has been
made to solve expensive multimodal optimization problems. Sys-
tematic experiments on 20 test functions show the encouraging and
promising performance of our proposed approach.

Index Terms—Surrogate-assisted evolutionary algorithm, exp-
ensive multimodal optimization, region decomposition, multilayer
perceptron, self-adaptive gradient-based local search.

I. INTRODUCTION

O PTIMIZATION problems that need costly physical ex-
periments to evaluate candidate solutions are known as

expensive optimization problems (EOPs) [1]. Classic evolu-
tionary algorithms (EAs) would lose feasibility and effective-
ness for such problems since they usually require hundreds of
thousands of exact function evaluations (FEs) [2], [3], [4], [5].
For expensive optimization, such a significant number of exact
function evaluations (FEs) is usually unaffordable. To bridge
the gap between cheap and expensive optimizations, a wide
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variety of surrogate-assisted EAs (SAEAs) [6], [7], [8], [9] have
been proposed and developed to tackle EOPs. Compared with
using expensive exact FEs, SAEAs prescreen candidate solu-
tions through surrogate models which are cheap approximations
of the fitness function. Frequently adopted surrogate models
include polynomial regression [10], Gaussian process (GP) [11],
[12], support vector machine (SVM) [13], [14], and radial basis
function (RBF) [15], [16]. Recently, some hybrid surrogates
and the ensemble of surrogates have also been developed for
different benefits. Since building surrogate models require much
less computational overhead cost, expensive exact FEs can be
lessened. Therefore, with the assistance of surrogate models,
SAEAs can evolve population and finally obtain the near-
optimal solution of EOPs under the limited exact FE budget.

Commonly, the design of SAEAs is based on the traditional
EA of search engines and the surrogate of fitness approximation.
Different from inexpensive optimization problems, EAs are
often naturally devised with surrogate models for population
evolution. Related work has been associated with evolutionary
operators from various EAs, such as genetic algorithm (GA), dif-
ferential evolution (DE), and particle swarm optimization (PSO).
For example, a linkage-learning-based GA with surrogate assis-
tance was presented to solve a set of pseudo-Boolean benchmark
functions [17]. Different from using a surrogate model as an
approximation of a fitness function, the proposed GA is used to
directly optimize the correctly learned surrogate which perfectly
matches the exact fitness function. In [18], a surrogate-assisted
differential evolution was devised to solve expensive constrained
optimization problems involving mixed-integer variables, and a
modified mutation strategy of DE is used to balance the local and
global characteristics of the candidate solutions which are then
prescreened by surrogate models. Moreover, a classifier-assisted
level-based learning swarm optimizer was designed to solve
large-scale EOPs in [19], where better candidate solutions are
classified rather than evaluated by the surrogate model.

Surrogates [20] can be roughly categorized into two types:
1) global surrogate models and 2) local surrogate models. The
former aim to approximate the landscape of a given problem,
and while the latter are aimed at achieving a high approxima-
tion accuracy within a limited decision region. For example,
Yang, et al. [21] utilized a global surrogate built by all the sam-
ples in a database to obtain the most potential offspring solution.
A surrogate-guided DE approach, proposed by Cai et al. [22],
uses the optima predicted by the global and local surrogates to
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guide the mutation direction of the DE algorithm, and thus the
proposed approach can achieve rapid converge. Liu et al. [23]
have designed two RBF models. One is to guide the global
learning strategy, and the other one is for the trust region local
search. Afterward, an improved version based on the decision
space partition is proposed in [24]. Kůdela et al. [25] developed
a novel Lipschitz-based surrogate that combines a standard
global RBF surrogate and a local optimization procedure to
enhance the search capability. In addition, some surrogates can
be further used in the prescreening strategies. For example,
Cai et al. [26] proposed a prescreening strategy based on the
expected improvement infilling criterion of a simplified GP to
obtain promising candidate offspring produced by the basic
GA, and Fu et al. [27] utilized the same criterion to balance
the potential and uncertainty of the candidate solutions for the
optimization of antenna synthesis.

So far, SAEAs have attracted much attention to many kinds
of expensive optimization, such as high dimensional EOPs [16],
[28], [29], large-scale EOPs [30], [31], multiobjective EOPs
[32], [33], [34], and constrained EOPs [35], [36], [37]. Com-
pared with the aforementioned EOPs, few attempts have been
made to solve expensive multimodal optimization problems
(EMMOPs) characterized by multiple global solutions [38]. The
mathematical model of such a problem can be formulated as
follows:

minimizef(x)

subeject tox ∈ ℜ (1)

where f(x) is the objective function, x = (x1, . . . , xD) denotes
a decision vector with D variables, and ℜ is the decision space
defined as

ℜ =

D∏
i=1

[LBi, UBi] (2)

where LBi and UBi are the lower and upper bounds of xi,
respectively. Different from solving EOPs which have a similar
formulation but only one optimal solution, it is very preferable
for EMMOPs to seek as many optimal solutions as possible,
such that decision-makers can be well informed to make a final
decision.

EMMOPs commonly arise in scientific and engineering op-
timization. For example, the design of antenna arrays can be
transformed into solving an EMMOP [27], [39]. In this case,
evaluating a candidate solution through physical simulation is
extremely expensive and requires the use of precious metals and
alloys. In contrast, one virtual simulation for estimation is cheap,
which can just be achieved by a high-performance computer. Re-
cently, three approaches have been proposed to solve EMMOPs,
namely DSCPSO-EMM [38], MaMPSO [40] and D/REM [2].
DSCPSO-EMM adopts a modal-guided dual-layer cooperative
surrogate model to assist PSO with the purpose of reducing
evaluation costs. And a clustering and peak-valley-based hybrid
strategy is proposed to detect new modalities. MaMPSO uses a
multi-surrogate-assisted multitasking PSO to solve EMMOPs.
The authors employ various surrogate models to transform an
EMMOP into a multitasking optimization problem, and then

design a multitasking niche particle swarm algorithm to solve
the transformed problem. D/REM locates the multiple global
solutions in two stages, wherein promising regions are first
detected and then local searches are performed in these identified
areas.

In the presence of multiple optima, solving EMMOPs is quan-
titatively challenging for SAEAs [41]. Generally, there are two
major difficulties. First, SAEAs are desirable to locate multiple
optimal solutions rather than one exclusively optimal solution.
Thus, the multimodality where different optima have identical
objective values requires special treatment. Second, for surro-
gate models themselves, the global regression ability is required
to approximate multiple attraction basins simultaneously. Since
surrogate models are often used to prescreen new candidate
solutions, population convergence and diversity can be directly
biased at the surrogate level. However, fitting the quantitatively
complex landscape of EMMOPs is not a trivial work. If a
surrogate has poor generalization, population diversity can be
impaired, which leads the population to converge prematurely to
one or two dominant solutions while neglecting others. In addi-
tion, EMMOPs also require high-precision solutions. Therefore,
the fitting function of surrogate models is expected to be closely
aligned with the training data. In this case, surrogate models for
the objective function of EMMOPs are prone to over-fitting due
to the quantitatively global and local optima. It is well known
that unreliable predictions of new data would frequently occur
in such a situation [42], which makes the model useless. As a
result, an over-fitting surrogate model does not assist EAs, but
directly impairs the population evolution.

Based on the above considerations, this study proposes a
decomposition-based SAEA, which is termed DSADE, to seek
multiple optimal solutions for EMMOPs. Specifically, the main
components of DSADE are: 1) the adaptive region decomposi-
tion (ARD); 2) the multilayer perceptron-based global surrogate
(MLPGS); and 3) the self-adaptive gradient descent-based local
search (SaGDLS). Accordingly, the contributions of this article
are threefold.

1) In this study, we have developed the ARD, an improved
version of density clustering [43], [44] to handle multi-
modality. ARD adaptively decomposes the decision space
into multiple subregions and allocates an independent pop-
ulation for each subregion to explore its potential optimal
solutions. To avoid wasting exact FEs, once a subregion
has been detected that its corresponding population fails
to search for the optimal solution or it has been explored
by the other sub-populations, such a subregion will be
discarded to save the expensive cost of exact FEs.

2) A MLPGS is proposed to evolve each sub-population
rather than prescreen offspring. If the objective function
is learned properly, the obtained solutions by optimizing
the surrogate can be close to the optimal solutions of the
original objective function. To this end, an attempt has
been made to simultaneously approximate the multiple
attraction basins of EMMOPs by the multilayer perceptron
(MLP) [45]. Theoretically, MLP with a back-propagation
training technique is better to avoid over-fitting and to keep
good generalization for complex fitness landscapes due to
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its characteristics of variable lengths of hidden layers and
neurons. However, the MLP-based surrogate has attracted
less attention than the mainstream surrogate models, such
as RBF, GP, and SVM.

3) A SaGDLS is developed to obtain highly precise candi-
date solutions required by EMMOPs. By using gradient
information, a fast convergence speed can be achieved.
Meanwhile, we utilize the coexistence of multiple optimal
solutions to adaptively calculate the increment instead of
setting step size for gradient descent (GD). Therefore, the
parameter sensitivity issue of GD can be largely alleviated.

In the experimental study, the performance of DSADE is eval-
uated on 20 EMMOPs to demonstrate the feasibility of DSADE.
In terms of expensive optimization, DSADE is compared with
five state-of-the-art algorithms to demonstrate satisfactory per-
formance and high efficiency.

The remainder of this article is organized as follows. Section II
presents preliminaries. Section III systematically elaborates on
our proposed approach DSADE. Empirical studies are reported
in Section IV. Section V concludes this article.

II. PRELIMINARIES

As the basis of DSADE, MLP and the standard GD algorithm
are briefly introduced in this section.

A. MLP

MLP is a multilayered feed-forward neural network and uti-
lizes back-propagation [46] for training and deep learning, which
is highly capable of fitting complex non-linear functions. An
MLP has three types of layers which are the input, the hidden,
and the output layers. Each layer has its elementary nodes. Es-
pecially, the nodes with nonlinear activation functions in hidden
and output layers are called neurons. To construct an MLP,
user-defined hyperparameters are required, such as the number
of hidden layers, learning rate, and activation function. Be-
sides hyperparameters, MLP also contains learnable parameters,
namely weights and bias, which transform received data within
hidden layers. The learning progress to obtain the most suitable
values for hyper-parameters is called neural network training.
Concerning MLP, the most popular optimization method is a
supervised learning technique called back-propagation.

A simple example is given in Fig. 1. In this case, the input layer
first receives a decision vector with four variables. Then, two
hidden layers, each with eight neurons, apply the given activation
functions to their received values. Finally, the output layer sums
all connections from hidden layers and returns the predicted
objective function value corresponding to the input decision
vector. An MLP with more hidden layers and neurons are usually
constructed to fit more complex problems. Correspondingly,
the deep learning technique with sophisticated approaches is
introduced to train a large neural network.

B. Gradient Descent

GD-based optimization algorithm iteratively uses the first-
order derivative information to find the minimum solution. Due

Fig. 1. Illustration of a simple feed-forward MLP with only two hidden layers.
The large circle represents an artificial neuron with a certain kind of activation
functions and the arc is associated with a weight at each neuron.

to its efficacy, efficiency, and simplicity, a wide variety of devel-
oped GD-based optimizers [47], [48], [49] are commonly used
in the areas of numerical optimization, control system, machine
learning, and deep learning.

The gradient of a differentiable function f(x) at a given D-
dimensional vector v = (v1, . . . , vD) is defined as follows:

∇f(v) =

⎡
⎢⎣

∂f
∂x1

(v)
...

∂f
∂xD

(v)

⎤
⎥⎦ (3)

where ∂ and ∇ denotes a partial derivative and the vector differ-
ential operator, respectively. ∇f(x) indicates the direction and
the rate of the fastest increase of function f(x), and therefore,
the opposite direction of the gradient, defined as the negative of
the gradient −∇f(x), is the direction of the steepest descent.
In numerical optimization, if the objective function is provided
by a black-box form, the gradient can be estimated by the linear
approximation in which the first-order partial derivative at the
ith variable of v can be numerically calculated [50] as follows:

∂f

∂xi
(v)=

f(v1, . . . , vi+Δx, . . . , vD)−f(v1, . . . , vi, . . . , vD)

Δx
(4)

where Δx converges to 0.
GD-based optimization algorithm minimizes the objective

function by iteratively calculating the next decision vector as
follows:

vn+1 = vn − η∇f(vn) (5)
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Fig. 2. Illustration of the standard GD algorithm. The black point is an initial
point. Stepping in the opposite direction of gradient iteratively leads to the initial
point toward the minimum solution.

where n denotes the iteration number and η is the step size
that scales the gradient. As the gradient specifies the steepest
direction and maximum increasing rate on a certain decision, the
GD-based optimization algorithm usually has a fast and stable
convergence speed. Fig. 2 graphically illustrates a common situ-
ation in which the black initial point repeatedly takes incremental
steps toward the lowest point on the smooth orange curve.

The classic GD-based optimization algorithms have several
well-known drawbacks that are 1) difficult to apply to non-
differentiable functions; 2) η-parameter dependent; 3) easy to
converge toward local minima if the objective function is non-
convex; and 4) sensitive to the initial point. Although there are
some drawbacks, GD-based optimization algorithms are still
the most attractive optimizers for machine learning due to their
computational efficiency, rapid convergence performance, and
simple working principle.

III. PROPOSED ALGORITHM

As EMMOP is an emerging research topic in expensive opti-
mization, few attempts have been made to develop SAEAs for
seeking multiple optimal solutions for such an EOP. To have a
better understanding of our contributions, we first introduce the
motivation of this study, and then elaborate on each component
of DSADE.

A. Motivation

In this study, an attempt has been made to fill the gap of SAEAs
in seeking multiple optimal solutions of EMMOPs. Although
such a kind of EOPs commonly arises in many real-world ap-
plications, fewer research efforts have been devoted to meeting
the challenge of EMMOPs. Thus, there is a need for an efficient
approach to handle EMMOPs.

With a limited number of FEs, how to explore the potential
attraction basins and simultaneously exploit multiple promising
solutions are two challenges for EMMOP optimizers. With
respect to the first challenge, the generalization ability of the
surrogate model is key to exploring as many potential attraction

basins as possible. Among various regression models, MLP is
a powerful neural network [45] that utilizes a back-propagation
learning technique for training. Furthermore, its structure can
be expanded into a larger one and then trained by deep learning
techniques. This capacity allows the approximation to complex
fitness landscapes, which is more potential to fit multiple peaks
of EMMOPs. We thus develop an MLP-based surrogate model
to predict the attraction basins associated with multiple optimal
solutions. Considering the second challenge, a novel SaGDLS
is proposed to exploit high-precision candidate solutions at a
rapid speed. The identical minimum objective function value of
multiple optimal solutions of EMMOPs enables the automation
of the step size η for the decision vector by utilizing objective
function information.

B. ARD

To solve EMMOPs, the population-based EA should converge
toward different optima simultaneously. To this end, we divide
the decision spaces into several promising areas and each of
these areas is allocated an independent sub-population to search.
Among various decision space division techniques, the decom-
position method derived from clustering [43] is an efficient one.
To better suit the property of EMMOPs, we propose an improved
version to avoid parameter learning progress which requires a
large number of exact FEs.

The decomposition technique is shown in Algorithm 1. The
seed as centroid for each sub-population is identified by a small
value fs and a large distance γl from the individuals of which
objective function values are also small. Given PS initial indi-
viduals {x1,x2, . . . ,xPS}, they are sorted in ascending order
according to their objective function values. Then, the minimal
distance between xi and the individuals ahead of xi can be
achieved as follows:

γi = min
j<i

dist(xi,xj) (6)

where dist(xi,xj) denotes the Euclidean distance between xi

and xj . For the x1 with the minimum objective function value,
its γ1 can be specially defined

γ1 = max
j=2,...,PS

γj + 0.1 (7)

where 0.1 is added to make sure that the best individual x1 has
the largest distance among the PS initial individuals.

Afterward, γ and f(x) are used together to identify the seeds
of sub-populations. If individuals have small objective function
values and large γ values, they are considered to be the seeds. In
the original decomposition technique, two predefined thresholds
fref and γref are set. If individual xi, i = 1, . . . , PS satisfies
f(xi) ≤ fref and γi ≥ γref , xi is considered to be a seed.
Once all seeds have been determined, each seed and its PN − 1
nearest neighbors are assigned to form the corresponding sub-
population.

Fig. 4 shows a simple example of ARD, which is the F11 test
function from the CEC’2020 multimodal competition [51]. The
black points represent 200 initial individuals which are randomly
generated in the two-dimensional decision space ℜ. The red
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Algorithm 1: ARD.
Input:
• PS: the number of initial individuals;
• D: the number of decision variables;
• PN : the sub-population size.

Initialization:
• Randomly generate PS individuals (Set P ) in ℜ;
• Evaluate the PS individuals by exact FEs;
• Sort the PS individuals by their f(x) values in
ascending order;
• Calculate the γ value for each individual by (6);
• Calculate the sequence number r = �PS

2D �;
• fref = f(xr) and γref = γr.

Seed Identification
Set S = {};
for i=1 to PS do

if f(xi) ≤ fref and γi ≥ γref
Move xi from P into S.

Sub-population Allocation:
Set N = |S|;
Set SPi = {}, i = 1, . . . , N ;
for i=1 to N do

For the ith seed in S, find its PN − 1 nearest
neighbors from P ;
Copy the ith seed and its PN − 1 neighbors into SPi.

Output:
N sub-populations SPi, i = 1, . . . , N .

points are eight seeds identified by ARD. The blue circles are
the six optimal solutions that need to be located simultaneously.
It can be observed that although black points are randomly
distributed, the promising areas can be detected by these blue
circles which are close to the red points.

The decomposition technique [44] can ideally divide indi-
viduals into a number of sub-populations without introducing
new parameters. All the input parameters are also required by
SAEAs. With respect to ARD, the number of sub-population
is fully self-determined, which is more practical for different
EMMOPs. In Algorithm 1, there are two major differences
between our developed ARD and the original version.
� In [44], the sequence number of r is set to �0.3PN�. In

our method, the setting of r is related to the number of
initial individuals PS and the dimensions D of the given
problems.

� In [44], the size of each sub-population is usually different.
In our method, each sub-population size is PN , which is
in favor of the population evolution.

C. SaGDLS

GD is an efficient and fast technique for optimization meth-
ods to find an optimal solution. However, its drawbacks are
also obvious. For instance, information from the gradient quite
easily leads the search toward the local optima, and the conver-
gence performance of classic GD-based optimization algorithms
largely depends on the incremental step size. In this study, a

Algorithm 2: SaGDLS.
Input:
• x: the given individual to exploit;
• fmin: the estimated best objective value;
• D: the number of decision variables;
• XS and Y S: archives for exactly evaluated
individuals;
• tfe: the number of used exact FEs.

Initialization:
• Calculate ∇f(x) by (4);
• tfe = tfe+D;
• Calculate ∇f(x)−1;

Self-adaptive GD:
while any improvement has been found do

Produce a new individual by (10);
Evaluate xnew by exact FE;
tfe = tfe+ 1;
Archive xnew and f(xnew) into XS and Y S,
respectively;
if f(xnew) < f(x) then

Set x = xnew;
else

Break the while loop.
Output:
x, tfe, XS and Y S.

novel SaGDLS is proposed to alleviate the above two issues by
considering the coexistence of multiple optimal solutions. The
pseudo-code of SaGDLS is present in Algorithm 2.

Given a decision vector x that is near to one of the optimal
solutions, the objective function value and the negative of the
gradient at x are f(x) and −∇f(x), respectively. Suppose the
increment step size Δη of x to its nearest optimal solution is
Δη = {η1, . . . , ηD}. Especially, the estimated objective func-
tion value of optimal solutions is fmin. Therefore, the relation-
ship among x, Δη, f(x), fmin, and ∇f(x) is as follows:

fmin − f(x) = Δη ×∇f(x) (8)

and then it has

Δη = (fmin − f(x))∇f(x)−1 (9)

where ∇f(x)−1 is the pseudo-inverse of ∇f(x). With respect
to (9), the value of f(x) is known and ∇f(x)−1 can be obtained
by numerical computations. Therefore, once the fmin has been
estimated, the Δη = {η1, . . . , ηD} can be calculated by the
right-hand term of (9). Finally, a new vector can be achieved
as follows:

xnew = x+Δη (10)

It is worth noting that, in (9), the right-hand term is used to
estimate Δη on the left-hand side, therefore the ∇f(x)−1 in (9)
is calculated by the forward finite difference independently.

To estimate fmin, we utilize the coexistence of multiple
optimal solutions with identical objective values. Suppose that
N sub-populations have already been divided from ARD and
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Fig. 3. Framework of DSADE.

the best objective function value f t
b found comes from the ith

sub-population at the current generation t. Then, there are two
different situations to estimate fmin as follows:
� For the ith sub-population, fmin is estimated by f t

b +
0.0001, where 0.0001 is the most often used accuracy
requirement [52], [53], [54], [55] for multiple optimal
solutions.

� For the other sub-populations, the best objective function
value f t

b found so far is directly used as fmin.
In this scenario, if one sub-population has already achieved

the best objective function value f t
b , then it is expected that the

other sub-populations should also achieve this value, otherwise,
premature convergence may occur. Furthermore, in our proposed
SaGDLS,Δη = {η1, . . . , ηD}becomes variable step size where
each variable of η is adaptively estimated.

Moveover, to make full use of the gradient information, an
adaptive scheme has been designed. As shown in Algorithm 2,
if a candidate solution has been successfully refined via the
proposed SaGDLS, the same gradient information will be reused
until no improvement can be obtained. In this way, the current
gradient information has been fully dug to have the maximum
achievement.

D. Complete Algorithm DSADE

In this section, the overall DSADE approach is described in
detail.

At each generation, DSADE maintains the following infor-
mation:

1) N sub-populations: {SPi|i = 1, . . . , N};
2) PN individuals for ithe sub-population: {xi

j |j =
1, . . . , PN, i = 1, . . . , N};

3) The objective function value f(xi
j), j = 1, . . . , PN, i =

1, . . . , N .
The pseudo-code and framework of DSADE are outlined in

Algorithm 3 and Fig. 3, respectively . We first briefly describe

Fig. 4. Illustration of ARD. The eight seeds (red points) are identified from the
200 randomly initialized individuals (black points) via ARD. The blue circles
represent the six global optima.

the overall evolutionary progress of DSADE. Then, details are
given to elaborate on the major components of DSADE which
are marked with ∗ in Algorithm 3.

After the initialization phase by Algorithm 1, PS random
individuals are automatically divided into N sub-populations,
and each sub-population has PN individuals. Besides, if the
decision vector has been evaluated by exact FE, such a vector
and its objective function value will be stored in the training
sets XS and Y S, respectively. Afterward, an MLP regression
model can be built based on the XS and Y S. As a cheap
surrogate f̂(x) for the exact FE, the MLP regression model
is used to evaluate new intermediate individuals. In DSADE,
the DE/current-to-rand/1/bin [56] is performed to produce off-
spring. Once the copied sub-population has evolved in sg gen-
erations, the most potential individual is evaluated by exact
FE to update its corresponding predecessor (target vector) in
the original sub-population. If the update is unsuccessful, the
SaGDLS presented in Algorithm 2 is activated to refine the
best individual, otherwise, the SaGDLS is not performed. After
several iterations, some different sub-populations may converge
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Algorithm 3: DSADE.
Input:
• PS: the number of initial individuals;
• D: the number of variables;
• PN : the sub-population size;
• sg: the generation number for surrogated-based
evolution.

Initialization:
Execute ARD (Algorithm 1);
Set XS = {xi|i = 1, . . . , PS};
Set Y S = {f(xi)|i = 1, . . . , PS}.

Evolutionary Progress:
while termination is not satisfied do
∗ Use XS and Y S to build a three-layer MLP
regression model;
for n = 1 to N do
∗ Copy the sub-population SPn as SPCn;
for ts = 1 to sg do

For each SPCn, produce its offspring population
OPn;
Evaluate OPn with the MLP regression model;
Update SPCn with OPn;

∗ Find the most potential individual xp from SPCi;
Evaluate xp by the exact FE;
Archive xp and f(xp) into XS and Y S,
respectively;
if xp is better than its predecessor xi in SPn then

Replace xi with xp;
else

Find the best individual xb from SPn;
Execute SaGDLS (Algorithm 2) to refine xb as x′

b;
Use x′

b to update the worst individual in SPn if
applicable;

∗ Discard the redundant and inferior sub-populations,
if any;

Output:
The best individual xb of sub-population
SPn, n = 1, . . . , N .

into the same optimal solution, and some sub-populations may
fall into the local optima. To avoid wasting exact FEs, such
sub-populations will be detected and discarded.

In DSADE, four major components are specifically designed
for EMMOPs.
� In DSADE, the fitness landscape of EMMOPs has multiple

peaks (optimal solutions). We use a three-layer MLP neural
network to enable the model capacity for learning and
detecting as many peaks as possible. However, increasing
the MLP model capacity helps reduce training error, but
it also increases the risk of over-fitting, especially for the
coexistence of multiple optimal solutions. To alleviate such
an issue, we use all the exactly evaluated decision vectors
to build the MLP regression model. Since most decision
vectors are randomly distributed on the decision space,
these data are balanced, varied, and unbiased to MLP model
training.

� In DSADE, ARD is only executed once in the initialization
phase. Afterward, each sub-population evolves indepen-
dently. It is worth noting that, different from using the
surrogate f̂(x) to prescreen offspring, we optimize the
f̂(x) to obtain a desired candidate solution for exact FEs.
To this end, we copy a given sub-population SPn first,
and then use the copied population SPCn as the initial
population to optimize the current MLP-based f̂(x). Fig. 3
shows the evolutionary progress to optimize f̂(x).

� After sg generations in Algorithm 3, the most potential
individual xp is chosen to have an exact FE. In this study,
we first compare each xj in SPCn with its corresponding
parent x′

j in SPn, and the individual that has the largest

potential improvement maxj=1,...,PN (f(x)j − f̂(x)′j) is
determined as xp. In this way, we do not choose the
individual with minimal f̂(x), which aims to balance the
population diversity and convergence.

� During the evolutionary progress, some redundant sub-
populations may converge toward the same optimal so-
lution, and some inferior sub-populations may converge
toward local optimal solutions. To avoid wasting exact FEs,
we use the distance threshold δ and stagnation tolerance
Q to detect the redundant and inferior sub-populations,
respectively. Given two sub-populations, if the distance
of their best individuals is less than δ, then we randomly
discard one of these two sub-populations. If a certain sub-
population has not been updated more than Q generations,
such a sub-population is also discarded. Here, we borrowed
the setting δ = 0.001 from [57], and set the maximum
value MaxFEs−PS

2·D·N toQ, whereMaxFEs is the maximum
number of exact FEs.

E. Computational Time Complexity

With respect to the computational complexity of DSADE,
apart from the exact FEs and ARD in the initialization phase, the
major components in each generation are considered as follows:

1) The time complexity of using back-propagation to train
a three-layer MLP neural network is O(Nitr · Ts · (N1 ·
N2 +N2 ·N3)), where Nitr is the number of training
iterations, Ts is the size of the training set, and N1, N2,
and N3 are the numbers of neurons of the three layers,
respectively;

2) The time complexity of optimizing the MLP-based f̂(x)
via DE is O(N · sg · PN ·D);

3) The worst-case time complexity of SaGDLS is O(D3);
4) The worst-case time complexity of discarding the redun-

dant and inferior sub-populations is O(N ·D2);
Therefore, the computational time complexity in each gen-

eration of DSADE is O(Nitr · Ts · (N1 ·N2 +N2 ·N3) +N ·
sg · PN ·D +D3 +N ·D2).

IV. EXPERIMENTAL STUDY

A. Experimental Settings and Performance Metrics

As an emerging research problem in expensive optimization,
so far, there has not been a well-designed test suite for EMMOPs
to evaluate the performance of algorithms on seeking multiple
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optimal solutions. Therefore, we borrowed the 20 benchmark
test functions from IEEE CEC’2020 multimodal competition
[51]. These 20 test functions can be classified into three groups.
The first group includes 10 widely used benchmark functions
(F1 to F10) in the multimodal optimization community, func-
tions (F11 to F15) in the second group are low-dimensional
composition test functions with many local optima, and the
third group consists of five high-dimensional composition test
functions (F16 to F20). Different from the original settings of
MaxFEs for each cheap test function in [51], theMaxFEs for
SAEAs is set to a limited computational budget in this study. For
example, the MaxFEs is 4.0E + 03 for F16 to F20, which is
only 1% of the original setting. Details can be found in Table S.I
(supplementary file).

To evaluate the performance of DSADE, two evaluation cri-
teria, namely peak ratio (PR) and success rate (SR) [51], are
employed. PR represents the average ratio of all global optima
found within an acceptable accuracy level ε over the number of
trials. SR indicates the rate of successful trials over all trials.
The way to calculate PR and SR is stated as follows:

PR =

∑NT

j N j
ago

NoG ·NT
SR =

NTS

NT
(11)

where NT is the number of total trials and N j
ago is the number of

acceptable global optima in the jth trial, NoG is the number of
known global optima of the test function, NTS is the number
of total successful trials. If all of the multiple global optima are
found in a single trial, such a trial is a successful one.

B. Compared Algorithms and Parameter Settings

To measure the efficiency, DSADE is compared with three
multimodal optimization approaches, namely, NCDE [53],
MOMMOP [57] and EMO-MMO [58], and four expensive
multimodal optimization approaches D/REM [2], GLEMOP
[2], DSCPSO-EMM [38], and MaMPSO [40]. These seven
competing approaches are briefly summarized in Table S.II
(supplementary file).

With respect to DSADE, the number of initial individuals
PS is set to 0.2 ·MaxFEs. The sub-population size PN
is set to 4 ·D so that four individuals at least can have to
employ DE/current-to-rand/1/bin. The number of neutrons for
each hidden layer is set to 200 ·D. The designed MLP neural
network is implemented by PyTorch v1.10.0. Particularly, the
AdamW optimizer is adopted to minimize the loss function. The
parameters of AdamW are set as default, which have achieved
satisfactory performance in most experiments. With respect to
the seven compared approaches, their parameter settings are as
suggested in the respective references. With respect to PR and
SR values, each algorithm is independently run in 25 trials at
five different accuracy levels (i.e., ε = 1E-01, 1E-02, 1E-03,
1E-04, and 1E-05). To have fair comparisons, the MaxFEs is
the same for all approaches.

C. Comparison With State-of-the-Art Algorithms

In this section, the performance of DSADE is compared with
seven algorithms. Table S.III (supplementary file) presents the

TABLE I
WILCOXON’S RANK-SUM TEST RESULTS OF DSADE AND THE FIVE

COMPARED ALGORITHMS

PR and SR values obtained by DSADE at five accuracy levels.
Since ε = 1.0E-04 is the most often used accuracy level in
discussions [52], [53], [54], [55], PR values of the other seven
approaches at such an accuracy level are compared with DSADE
in Tables S.IV and V (supplementary file). The best PR value
is highlighted in boldface for each test function. Moreover,
Wilcoxon’s rank-sum test [59] at a significant level α = 0.05
is used here to test whether there is a statistical improvement
between DSADE and the corresponding competitor. Symbols
+ and − indicate that DSADE is significantly better and signif-
icantly worse than the competitor, respectively.

1) Comparison With Multimodal Optimization Approaches:
Table S.IV shows that DSADE achieves the best PR results on
14 out of 20 test functions. Particularly, the PR and SR values
achieved by DSADE on F1, F2, F3, F4, and F10 are both 1.000,
indicating DSADE can consistently find all the multiple global
solutions for these five test functions in 25 consecutive trials.
On the first 10 widely used test functions, DSADE achieves
greater PR values than the other compared approaches. On
the last ten composition test functions, the performance of
the five competitive approaches and DSADE varies. While the
performance of DSADE shows a slight decrease on the last
10 test functions. It is noteworthy that DSADE is capable of
identifying at least one or two optimal solutions for F19 and
F20. Table S.IV also shows that the state-of-the-art algorithms
NCDE, MOMMOP, and EMO-MMO struggle to locate multiple
optimal solutions on most test functions simultaneously due to
the limited computational budget. Their inferior performance
indicates the difficulty of EMMOPs. In comparison, although
DSADE cannot achieve high PR values on most test functions,
it has more best PR values at the accuracy level ε = 1.0E-04
compared with the three multimodal optimization approaches,
implying the feasibility of DSADE to solve EMMOPs.

Specifically, DSADE outperforms all the 20 test functions to
NCDE, MOMMOP, and EMO-MMO. In Table I, Wilcoxon’s
test result confirms the performance of DSADE is superior
to the three original multimodal optimization approaches as
all R+ scores of DSADE are higher than the R− scores of
the corresponding competitor. It is clear that the application
of surrogate assistance in DSADE can significantly reduce the
requirement of exact FEs to find more global optimal solutions.

2) Comparison With Expensive Multimodal Optimization
Approaches: To further verify its performance on EMMOPs,
DSADE is compared with four other SAEAs. Given the truth
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Fig. 5. Distribution of multiple optimal solutions on five EMMOPs. (a) F1 (b) F2 (c) F3 (d) F4 (e) F10. The black points are acceptable optimal solutions.

that little attention has been paid to multiple optimal solu-
tions of EMMOPs, we only find four SAEAs, i.e., D/REM,
GLEMOP, DSCPSO-EMM, and MaMPSO, that focus on EM-
MOPs at present. Different from DSADE, D/REM, GLEMOP,
and DSCPSO-EMM adopt the popular RBF network to ap-
proximate the multimodal fitness landscape, while a hybrid
surrogate model including the RBF network, GP, and poly-
nomial regression, is used in MaMPSO. It is worth noting
that unlike DSADE, D/REM, and GLEMOP that only focus
on the multiple global optima, DSCPSO-EMM and MaMPSO
consider both the local and global optima, and thus their
full performance is not available on these 20 test functions.
When compared with these four SAEAs, the performance of
DSADE is still competitive. Specifically, DSADE outperforms
D/REM, GLEMOP, DSCPSO-EMM, and MaMPSO on 9, 17,
18, and 18 test functions, respectively. In contrast, D/REM,
GLEMOP, DSCPSO-EMM, and MaMPSO perform better than
DSADE on five, one, zero, and zero test function, respectively.
Meanwhile, according to Table I, DSADE achieves more R+
scores than R− scores over these four SAEAs on the 20 test
functions.

Moreover, Fig. 5 depicts the fitness landscape and the obtained
candidate solutions by DSADE on five test functions F1, F2, F3,
F4, and F10. Since the fitness landscape of these test functions
can be plotted in a two- or three-dimensional diagram, an insight
into the distribution of multiple optimal solutions can be visibly
observed. Fig. 5 shows that even when the fitness landscape
becomes more complex, such as the number of global optima
becoming larger, DSADE can still locate all the optimal solu-
tions on these test functions at high accuracy levels.

Overall, the above comparative analyses and statistical tests
validate the feasibility and solid performance of our proposed
DSADE to locate multiple optimal solutions on the 20 EM-
MOPs.

D. Effectiveness of ARD

In [44], the original decomposition technique was proposed
to partition the decision space and detect promising areas for
multimodal optimization problems. As an improved version,
ARD can automate the two parameters fref and γref , which are
user parameter-free to partition the whole decision space and
divide individuals into different promising areas. To validate
our improvement, a computational trial, namely DSADE-OD,
is designed. In this case, an original decomposition technique

is used to replace ARD while the other components remain
unchanged. The fref and γref parameters are set to �0.3PN�
as suggested in [44].

Table S.VI (supplementary file) lists the experimental PR
results obtained by DSADE-OD. According to the results,
DSADE-OD cannot match the performance of DSADE. On
the test functions The PR values obtained by DSADE on most
test functions are better than that of DSADE-OD. The reason
is that the limited computational budget for EMMOPs cannot
support the fref and γref to detect the promising areas including
both the global and local optima. For EMMOPs, the global
optima are always preferred over the local optima. Meanwhile,
the number of global optima is problem-dependent. A fixed value
of fref and γref is unsuitable for all test functions to detect
the promising attraction basins in which the multiple global
optima lie, thus decreasing the performance of the algorithm
in solving EMMOPs.

Based on the above comparison, we can conclude that ARD
is more suit the property of EMMOPs.

E. Effectiveness of MLP-Based Surrogate Model

Despite its distinctive advantages for EMMOPs, the MLP-
based surrogate model has not received as much attention as
the RBF network-based and GP-based surrogate models which
are considered mainstream in SAEAs. Basically, MLP allows
more hidden layers and each layer can have variable-length
neurons to fit a complex nonlinear problem. Meanwhile, the
training progress of MLP is highly adaptable with the help of
the back-propagation technique. Once the structure of MLP
has been determined, it does not require any other input pa-
rameters. To investigate the effectiveness of our MLP-based
surrogate model, we designed three computational trials using
different surrogate models. The RBF network, GP, and SVM
have been used to replace the MLP-based surrogate models
in DSADE, and accordingly, the corresponding algorithms
are denoted as DSADE-RBF, DSADE-GP, and DSADE-SVM,
respectively.

The empirical results obtained by DSADE, DSADE-RBF,
DSADE-GP, and DSADE-SVM are presented in Table S.VII
(supplementary file). We can see that: 1) the DSADE-RBF can
find more than one optimal solution on most test functions.
However, its performance is significantly inferior to that of
DSADE; 2) DSADE-GP and DSADE-SVM can locate some
optimal solutions among the first ten basic test functions, but
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their performance degrades seriously on the last ten composition
functions. The main reason is that the surrogate of DSADE
is designed as a global estimator to predict the multiple at-
traction basins and evolve the population for a certain number
of generations. Therefore, the characteristic of generalization
is highly desirable for a surrogate model in DSADE. To this
end, all the evaluated data are used to train the surrogate,
and therefore more information needs to be learnt. Compared
with the other three surrogate models, MLP benefits from
having the more hidden layers, variable-length neurons, and
the back-propagation training technique, which enables it to
learn information more effectively from a large number of input
data.

The above discussions verify that the MLP-based surrogate
model is more suitable for DSADE to seek multiple optimal
solutions at a limited computational budget.

F. Effectiveness of Gradient-Based Local Search

Different from evolutionary strategy-related convergence en-
hancements, DSADE proposes a novel SaGDLS to achieve a
rapid population convergence toward different optimal solu-
tions. To investigate the effectiveness of SaGDLS, we design
a variant of DSADE which discards the gradient descent, and
therefore only DE/current-to-rand/1/bin is deployed to pro-
duce new individuals. This new variant is denoted as DSADE-
WG, and its obtained experimental results are presented in
Table S.VIII (supplementary file).

It can be observed that compared with DSADE, the perfor-
mance of DSADE-WG drastically degrades on 16 out of 20 test
functions. Moreover, DSADE-WG cannot find any optimal so-
lution on F1, F6, F8, F16, F17, F18, F19, and F20 in 25 consecutive
trials. Based on the above comparison, two points can be verified.
First, SaGDLS largely enhances population convergence. Since
DSADE wins all 20 test functions over DSADE-WG, the prema-
ture convergence of classic GD-based optimization algorithms
would be alleviated by the adaptive strategy of SaGDLS. We
attribute this to the ARD. Since the decision space has been
divided into different small promising areas, it is easy to search
each small area that contains a less number of optimal solutions.
Second, the SaGDLS does not need a large amount of exact
FEs as the classic GD-based optimization algorithms to obtain a
highly accurate solution. Without SaGDLS, DSADE-WG uses
all exact FEs to evaluate individuals. However, only one or
two accurate optimal solutions can be located on 16 out of
20 functions. In contrast, although some exact FEs are used to
calculate gradient, the convergence to multiple optimal solutions
is not impaired. We attribute this to our proposed estimation of
fmin. Since each small area has been initially explored by each
sub-population with DE/current-to-rand/1/bin, individuals have
already approached to the near-optimal solutions. SaGDLS just
refines rather than explores the best individual, and thus the
estimation of fmin can be more efficient to exploit the given
solution with a few exact FEs.

Considering the above comparisons, it can be concluded that
the SaGDLS is quite efficient to assist DSADE to seek multiple
optimal solutions for EMMOPs.

V. APPLICATION OF DSADE TO REAL-WORLD PROBLEMS

The application feasibility of DSADE is tested on a real-world
problem called the building energy conservation design (ECD)
[40], [60] which aims to minimize energy consumption by
optimizing the structural parameter of a given building. To obtain
energy consumption, the time-consuming software EnergyPlus
is required to simulate the structure of the building. Meanwhile,
different solutions may produce identical objective function val-
ues when attempting to minimize energy consumption. Herein,
such a problem can be considered an EMMOP.

A. Experimental Settings

The problem setting is borrowed from [40], which takes the
ECD of a single-room building in Beijing. Specifically, the
input for software simulation consists of 12 decision variables
which are most relevant to building energy performance. For
each individual of DSADE, their genes represent a set of values
for these 12 decision variables. Considering an exact FE, En-
ergyPlus should be run to simulate the building structure, and
then calculate the energy consumption according to the input
individual’s genes. Afterward, the output result is the objective
function value. Further details such as initial values, lower and
upper bounds of variables can be found in [40].

We compare DSADE with the original multimodal optimiza-
tion approach MOMMOP [57] and two SAEAs SA-MPSO [23]
and DSP-SAEA [24]. A brief description of these two SAEAs
can be found in the Introduction Section. Their major parameter
settings are presented in Table S.II, and the other parameter
settings are as suggested in the respective references. To have
a clear observation, the MaxFEs is set to a comparatively
large value, i.e., 4.0E+03. Each algorithm is independently run
25 trials. Once all the global optima have been found, the
corresponding trial will be stopped and the executing time will
be recorded.

B. Result

Table S.IX (supplementary file) lists the PR, SR, and the
average executing time obtained by DSADE, DSP-SAEA, SA-
MPSO and MOMMOP, respectively. Compared with the other
two SAEAs, DSADE needs more time to train the MLP-based
surrogate and evolve the population. Nevertheless, DSADE
can find all the global optimal solutions in 25 consecutive
trials, which can satisfy the decision makers for their different
demands. On the other hand, compared with the MOMMOP,
although the DSADE achieves the same performance with
MOMMOP on the PR and SR metrics, DSADE can solve the
ECD problem using less exact FEs and executing time, which is
more suitable for the real-world EMMOPs.

Based on the above comparisons, DSADE is highly compe-
tent to locate multiple global optimal solutions under a limited
computational budget.

VI. CONCLUSION

This article proposes a new approach, DSADE, for seeking
multiple optimal solutions for EMMOPs under a limited exact
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FE budget. DSADE utilizes the MLP neural network to simulate
the multimodal fitness landscape for the generalization ability
of a surrogate model. As a multilayered deep learning neural
network, MLP is more designable and suitable for complex
fitness landscape fitting. Considering the discrete distribution of
multiple optimal solutions, DSADE first detects the promising
areas by the improved ARD, and then a new SaGDLS is de-
signed for high-precision candidate solutions. Compared with
the classic GD-based optimization algorithms, the SaGDLS is
more efficient to refine individuals with a few exact FEs due to
the adaptive estimation of the best objective function value. The
combination of ARD and SaGDLS may offer a new way to seek
multiple optimal solutions of EMMOPs for SAEAs.

We measure the performance of DSADE on 20 benchmark
test functions. In the comparison with five state-of-the-art al-
gorithms, DSADE shows its overwhelming efficiency to seek
multiple optimal solutions simultaneously, and shows significant
improvement to the compared algorithms on most test functions.
The experimental study demonstrates the effectiveness of the
proposed SaGDLS in exploiting high-precision candidate solu-
tions.

Future work will focus on the improvements of the MLP-
based surrogate model and evolutionary strategies for SAEAs
to seek multiple optimal solutions for EMMOPs.
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Supplementary Material for “A Surrogate-Assisted
Evolutionary Algorithm for Seeking Multiple

Solutions of Expensive Multimodal Optimization
Problems”

TABLE S.I
THE BASIC PROPERTIES OF 20 EMMOPS

Function D Number of global optima Number of local optima MaxFEs
F1: Five-Uneven-Peak Trap 1 2 3 5.0E+02

F2: Equal Maxima 1 5 0 5.0E+02
F3: Uneven Decreasing Maxima 1 1 4 5.0E+02

F4: Himmelblau 2 4 0 5.0E+02
F5: Six-Hump Camel Back 2 2 2 5.0E+02

F6: Shubert 2 18 many 2.0E+03
F7: Vincent 2 36 0 2.0E+03
F8: Shubert 3 81 many 2.0E+03
F9: Vincent 3 216 0 2.0E+03

F10: Modified Rastrigin 2 12 0 2.0E+03
F11: Composition Function 2 6 many 2.0E+03
F12: Composition Function 2 8 many 2.0E+03
F13: Composition Function 2 6 many 2.0E+03
F14: Composition Function 3 6 many 2.0E+03
F15: Composition Function 3 8 many 2.0E+03
F16: Composition Function 5 6 many 4.0E+03
F17: Composition Function 5 8 many 4.0E+03
F18: Composition Function 10 6 many 4.0E+03
F19: Composition Function 10 8 many 4.0E+03
F20: Composition Function 20 8 many 4.0E+03
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TABLE S.II
DETAILS OF COMPARED STATE-OF-THE-ART ALGORITHMS

Alg. Evolutionary Strategy Major Parameter Settings
NCDE [1] multiobjective optimization-based approach PS = 100, F = 0.5, and CR = 0.9.

MOMMOP [2] neighborhood crowding strategy-based DE approach PS = 100, F = 0.6, and CR = 0.8.

EMO-MMO [3] density indicator-based approach with fitness PS = 500, m = 20, and ϕ = 0.landscape approximation and peak detection
D/REM [4] RBF surrogate-assisted expensive optimization approach If MaxFEs≤ 300, PS = 50; otherwise PS = 100.

GLEMOP [4] global and local combined surrogate-assisted If MaxFEs≤ 300, PS = 50; otherwise PS = 100.expensive optimization approach

DSCPSO-EMM [5] dual-layer surrogate assisted PSO PS = 100, RBFN-BP = {8,D,8D}
and RBFN-BP = {D+1,d

√
D+4e,D+2}.

MaMPSO [6] multi-surrogate-assisted multitasking PSO PS = 100, PN = 100, εini = 0.5,
cmax = 3, and DBini = 5D.

DSP-SAEA [7] decision space partition based PS = 5D, PN = 50, n = 5, and θ = 7.surrogate-assisted evolutionary algorithm
SA-MPSO [8] surrogate assisted multi-population particle swarm optimizer PS = 100, λ = 0.5, f i = 200, and Si = 50.
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TABLE S.III
PR AND SR VALUES OBTAINED BY DSADE AT FIVE ACCURACY LEVELS

Accuracy 1.0E-01 1.0E-02 1.0E-03 1.0E-04 1.0E-05

Level PR SR PR SR PR SR PR SR PR SR

F1 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

F2 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

F3 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

F4 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

F5 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

F6 0.256 0.000 0.256 0.000 0.256 0.000 0.256 0.000 0.256 0.000

F7 0.433 0.000 0.419 0.000 0.400 0.000 0.394 0.000 0.378 0.000

F8 0.019 0.000 0.016 0.000 0.016 0.000 0.015 0.000 0.014 0.000

F9 0.077 0.000 0.067 0.000 0.059 0.000 0.053 0.000 0.050 0.000

F10 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

F11 0.700 0.000 0.667 0.000 0.667 0.000 0.667 0.000 0.667 0.000

F12 0.388 0.000 0.388 0.000 0.388 0.000 0.388 0.000 0.388 0.000

F13 0.667 0.000 0.667 0.000 0.667 0.000 0.667 0.000 0.667 0.000

F14 0.767 0.300 0.600 0.000 0.600 0.000 0.600 0.000 0.600 0.000

F15 0.375 0.000 0.375 0.000 0.375 0.000 0.375 0.000 0.375 0.000

F16 0.517 0.400 0.250 0.000 0.250 0.000 0.250 0.000 0.250 0.000

F17 0.350 0.000 0.200 0.000 0.200 0.000 0.200 0.000 0.200 0.000

F18 0.267 0.100 0.117 0.000 0.117 0.000 0.117 0.000 0.117 0.000

F19 0.037 0.000 0.037 0.000 0.037 0.000 0.037 0.000 0.037 0.000

F20 0.113 0.000 0.075 0.000 0.075 0.000 0.062 0.000 0.062 0.000

Average 0.5483 0.3400 0.5042 0.3000 0.5029 0.3000 0.5016 0.3000 0.5006 0.3000
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TABLE S.IV
PR VALUES OBTAINED BY DSADE AND NCDE, MOMMOP, AND EMO-MMO AT ε = 1E-04

Ins. / PR DSADE NCDE MOMMOP EMO-MMO

F1 1.000 0.533 0.967 0.000

F2 1.000 0.107 0.173 0.320

F3 1.000 0.133 0.133 0.133

F4 1.000 0.000 0.000 0.000

F5 1.000 0.000 0.000 0.000

F6 0.256 0.000 0.000 0.059

F7 0.394 0.000 0.000 0.017

F8 0.015 0.000 0.000 0.010

F9 0.053 0.000 0.000 0.004

F10 1.000 0.006 0.011 0.006

F11 0.667 0.000 0.000 0.000

F12 0.388 0.000 0.000 0.017

F13 0.667 0.000 0.000 0.011

F14 0.600 0.000 0.000 0.011

F15 0.375 0.000 0.000 0.017

F16 0.250 0.000 0.000 0.000

F17 0.200 0.000 0.000 0.000

F18 0.117 0.000 0.000 0.000

F19 0.037 0.000 0.000 0.000

F20 0.062 0.000 0.000 0.000
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TABLE S.V
PR VALUES OBTAINED BY DSADE AND D/REM, GLEMOP, DSCPSO-EMM AND MAMPSO AT ε = 1E-04

Ins. / PR DSADE D/REM GLEMOP DSCPSO-EMM MaMPSO

F1 1.000 1.000 0.000 0.500 0.500

F2 1.000 1.000 0.968 0.192 0.200

F3 1.000 1.000 1.000 1.000 1.000
F4 1.000 0.970 0.940 0.200 0.230

F5 1.000 0.940 1.000 1.000 1.000
F6 0.256 0.198 0.273 0.047 0.031

F7 0.394 0.311 0.222 0.022 0.009

F8 0.015 0.010 0.000 0.002 0.000

F9 0.053 0.049 0.028 0.004 0.004

F10 1.000 1.000 0.893 0.180 0.173

F11 0.667 0.733 0.600 0.167 0.167

F12 0.388 0.325 0.250 0.150 0.125

F13 0.667 0.667 0.540 0.167 0.167

F14 0.600 0.667 0.193 0.167 0.173

F15 0.375 0.375 0.055 0.125 0.009

F16 0.250 0.667 0.033 0.167 0.053

F17 0.200 0.325 0.000 0.125 0.125

F18 0.117 0.167 0.000 0.020 0.010

F19 0.037 0.010 0.000 0.000 0.000

F20 0.062 0.000 0.000 0.000 0.000
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TABLE S.VI
EFFECTIVENESS INVESTIGATION ON ARD

Ins. / PR DSADE DSADE-OD Ins. / PR DSADE DSADE-OD

F1 1.000 1.000 F11 0.667 0.600

F2 1.000 1.000 F12 0.388 0.000

F3 1.000 1.000 F13 0.667 0.000

F4 1.000 0.960 F14 0.600 0.153

F5 1.000 0.940 F15 0.375 0.155

F6 0.256 0.117 F16 0.250 0.000

F7 0.394 0.314 F17 0.200 0.000

F8 0.015 0.008 F18 0.117 0.000

F9 0.053 0.002 F19 0.037 0.000

F10 1.000 1.000 F20 0.062 0.000
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TABLE S.VII
EFFECTIVENESS INVESTIGATION ON MLP-BASED SURROGATE MODEL

Ins. / PR DSADE DSADE-RBF DSADE-GP DSADE-SVM Ins. / PR DSADE DSADE-RBF DSADE-GP DSADE-SVM

F1 1.000 1.000 1.000 1.000 F11 0.667 0.667 0.247 0.087

F2 1.000 1.000 0.984 0.992 F12 0.388 0.270 0.000 0.000

F3 1.000 1.000 1.000 1.000 F13 0.667 0.667 0.093 0.000

F4 1.000 1.000 1.000 1.000 F14 0.600 0.553 0.040 0.053

F5 1.000 1.000 1.000 1.000 F15 0.375 0.265 0.095 0.000

F6 0.256 0.180 0.117 0.038 F16 0.250 0.186 0.000 0.000

F7 0.394 0.236 0.119 0.000 F17 0.200 0.000 0.000 0.000

F8 0.015 0.002 0.000 0.000 F18 0.117 0.000 0.000 0.000

F9 0.053 0.038 0.014 0.000 F19 0.037 0.000 0.000 0.000

F10 1.000 0.992 0.543 0.380 F20 0.062 0.000 0.000 0.000
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TABLE S.VIII
EFFECTIVENESS INVESTIGATION ON SAGDLS

Ins. / PR DSADE DSADE-WG DSADE DSADE-WG Ins. / PR DSADE DSADE-WG DSADE DSADE-WG

F1 1.000 0.000 F2 1.000 0.980 F3 1.000 1.000 F4 1.000 0.150

F5 1.000 1.000 F6 0.256 0.000 F7 0.394 0.313 F8 0.015 0.000

F9 0.053 0.038 F10 1.000 0.992 F11 0.667 0.250 F12 0.388 0.025

F13 0.667 0.100 F14 0.600 0.017 F15 0.375 0.013 F16 0.250 0.000

F17 0.200 0.000 F18 0.117 0.000 F19 0.037 0.000 F20 0.062 0.000
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TABLE S.IX
RESULTS OF DSADE AND THE COMPARED ALGORITHMS ON THE ECD PROBLEM

Algorithm PR SR Time (s)
DSADE 1.00 1.00 4633
SA-MPSO 0.50 0.00 2032
DSP-SAEA 0.54 0.08 2203
MOMMOP 1.00 1.00 52871
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