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Abstract—Economic dispatching of generating units in a power
system can significantly reduce the energy cost of the system.
However, the economic dispatch (ED) problem is highly con-
strained, and often has disconnected feasible regions because of
various physical features. Enhancing population diversity is criti-
cal for the evolutionary approach to fully explore and exploit the
feasible regions. In this article, we propose a density-enhanced
multiobjective evolutionary approach to solve ED problem. An
ED problem is first transformed into a tri-objective optimization
problem, and then multiobjective optimization techniques are
employed to fully optimize the constraints and cost function
simultaneously. The first two objectives are derived from the orig-
inal ED problem, while the third one is a novel density objective
constructed by niching methods to enhance population diversity.
These three objectives are optimized simultaneously by a dynamic
dominance relation, which can make a good balance among fea-
sibility, diversity, and convergence. To evaluate the performance
of this proposed approach, 22 benchmark problems and seven
real-world ED problems with different features are tested in this
article. The experimental results show that our approach per-
forms better than or at least competitive to the state-of-the-art
algorithms, especially on large-scale ED problems.

Index Terms—Differential evolution (DE), dynamic constraint-
handling technique, economic dispatch (ED) problem,
multiobjective optimization.

I. INTRODUCTION

THE ECONOMIC dispatch (ED) problem for power gen-
eration is a constrained optimization problem that is

commonly seen in real-world power systems [1]–[6]. There
are two common objectives when solving an ED problem. The
first one is to minimize the total generation cost for all gener-
ating units. The second one is to satisfy all the constraints
that the power system contains. Traditionally, mathemati-
cal optimization methods, such as Lagrangian relaxation [7],
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quadratic programming [8], gradient method [9], linear pro-
gramming [10], and hybrid approaches [11], [12], were
adopted to solve the ED problems. However, the performance
of these mathematical approaches overwhelmingly depends
on the starting points which are problem-specific and dif-
ficult to determine in advance. Furthermore, since various
physical features are involved in the power systems, such as
valve-point effects, prohibited operating zones, ramp rate lim-
its, and multiple fuel options, an ED problem may contain
multiple characteristics, such as multimodality, discontinu-
ity, nonconvexity, and large-scale dimensions, which makes
it difficult for traditional optimization methods to solve the
problem [4], [5].

Recently, the heuristic algorithms, such as genetic algorithm
(GA) [13], particle swarm optimization (PSO) [4], [14], [15],
differential evolution (DE) [16], artificial bee colony
(ABC) [17], and artificial immune system (AIS) [18], have also
been proposed to solve ED problems. These nature-inspired
heuristic algorithms utilize a population of individuals and the
principle of survival of the fittest to search for the promising
solutions. They require little domain information of a given
ED problem in the searching process and have been shown to
have strong global search ability.

The ED problem is a highly constrained problem that
involves a number of equality and inequality constraints.
Therefore, various constraint-handling techniques [19] were
proposed and developed to be integrated with heuristic algo-
rithms for solving ED problems. According to [20], the pop-
ular constraint-handling techniques developed over the years
can be generally classified into three categories as follows.

1) Methods based on penalty functions [13], [21], [22].
2) Methods based on the preference of feasible solutions

over infeasible solutions [20], [23], [24].
3) Methods based on multiobjective optimization

[10], [25], [26].
Due to the simplicity, the penalty function is one of the
most frequently used techniques for handling constraints. It
converses the constrained optimization problem into an uncon-
strained one by adding a punishment. In this way, the original
heuristic algorithms, such as GA, DE, and PSO, can be directly
integrated without any further operation. As for the second
category, the comparison between two individuals is based on
their feasibility. For instance, in the selection of feasibility
rule [27], the feasible solutions are prior to the infeasible solu-
tions, even if the latter ones slightly violate the constraints but
have good objective function values. In the methods based on
multiobjective optimization, the multiobjective optimization
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techniques are applied to solving constrained optimization
problems. By the concept of considering the constraints as
objectives [28], [29], a multiobjective optimization problem
(MOP) is constructed from the original objective function and
the information of constraints. Then, the existing successful
multiobjective optimization algorithms can be utilized to solve
the transformed problem.

Among the above three categories, there are two distinct
features [30], [31] when applying multiobjective optimization
techniques to solving constrained optimization problems, espe-
cially to ED problems. First, the constraints and the objective
function are optimized in a synchronous way so that some
infeasible solutions with better objective values and less con-
straint violations can be selected. As a result, the search bias
caused by handling constraints and optimizing objective func-
tion in an asynchronous way, such as the methods based on the
first and second categories, can be efficiently avoided. Second,
it is well known that a good population diversity can alleviate
premature convergence. Nonetheless, for solving ED problems
by multiobjective optimization, less effort has been made to
enhance population diversity. Comparing with the other two
categories, multiobjective optimization has advantage of main-
taining population diversity. To make full use of multiobjective
optimization, in this article, we develop a density-enhanced
multiobjective optimization approach (DMOA) to obtain high-
quality feasible solutions. In the proposed approach, the ED
problem is first transformed into a tri-objective optimization
problem (TOP), and then multiobjective optimization com-
bined with DE is employed to solve the transformed
problem. In the transformation, the niching method is uti-
lized to enhance the population diversity. Generally, the
main contributions of the proposed DMOA are summarized
as follows.

1) In the proposed transformation, a novel density objec-
tive is constructed by niching methods to enhance
population diversity in both infeasible and feasible
regions.

2) A shrinkage scheme is proposed to alleviate the
search premature convergence in the infeasible regions.
The infeasible regions are conditionally considered
as feasible regions, so that search bias can be
relieved.

3) By transforming an ED problem into a TOP, the
transformed three objectives can be optimized simul-
taneously. In this way, a good balance among feasi-
bility, diversity, and convergence can be obtained by
multiobjective optimization.

The remainder of this article is organized as follows.
Section II reviews related works on constraint-handling
techniques and population diversity maintaining strategies.
Section III presents the mathematical formulations of ED prob-
lems. Preliminaries of our proposed algorithm are reviewed
in Section IV. Section V introduces DMOA. Experiments
and performance comparisons among several state-of-the-art
algorithms are reported in Section VI. Moreover, the effective-
ness of the third objective and shrinkage scheme in DMOA
are also analyzed in Section VI. Section VII concludes this
article.

II. LITERATURE REVIEW

In recent decades, how to properly utilize different kinds
of energy has attracted research efforts due to the rapidly
increasing consumption. Therefore, the ED problem in power
systems has become an important research issue [2], [15].
Since the power ED problem is highly constrained, handling
constraints is critical in solving ED problems. In addition,
the objective function is also important. When generating
certain amount of power, the lower objective function value
the algorithm obtains, the less energy consumption it brings.
Comparing to the classic methods [7]–[10], the nature-inspired
heuristic algorithms have shown their advantages of han-
dling constraints and optimizing objective function in solving
ED problems. In this section, we mainly focus on how
these heuristic algorithms handle constraints and maintain
population diversity for global optimum.

As introduced in Section I, the penalty function is the most
widely used technique. The penalty function and its variants
mainly incorporate the constraint violation as a punishment to
objective function value. Therefore, the constraints and objec-
tive function information are combined to form a new fitness
function. A common formulation is written in the following
form [22]:

Minimize ψ(x) = f (x)+ ω0

m∑

j=1

ωj
(
Gj(x)

)β (1)

where ψ(x) is the fitness value of x, ω0 and ωj are penalty
factors, and Gj(x) [24] is the constraint violation on the jth
constraint

Gj(x) =
{

max{gj(x), 0}, for inequality constraint
max{|gj(x)| − δ, 0}, for equality constraint

(2)

where Gj(x) is the degree of constraint violation of the variable
vector x on the jth constraint gj, and δ is a positive tolerance
parameter for the equality constraints.

In [21], [32], and [33], the PSO, and the random drift
PSO (RDPSO) and its improved version ST-IRDPSO are inte-
grated with the penalty function method to solve ED problems.
To avoid penalty function being ill conditioned in some spe-
cific situations, Chiang [13] developed a new penalty function
method by employing the Lagrange function. Based on the
penalty function method, existing heuristic algorithms usually
enter the feasible region first, and then locate the feasible solu-
tion with the minimum objective value. In the early phase,
most solutions violate the constraints, which means the con-
straint violation plays a dominant role in the fitness function.
Hence, the population always moves toward a region in which
all constraint violations are small. Once the population enters
the feasible region, the objective function value plays a dom-
inant role in the fitness function. Then the solution with
the minimum objective value would be located in the later
phase.

In addition, constraint-handling methods based on the pref-
erence of feasible solutions over infeasible solutions is another
popular way for solving ED problems. In general, feasible
solutions are mainly considered to be superior to infeasible
ones such as the feasibility rule proposed in [27]. However,
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due to the physical features existed in ED problems, there
are too many mutually coupled equality constraints that make
the naive feasible rule fail to work efficiently. Therefore,
various new variants were specially developed for ED prob-
lems. For example, Duvvuru and Swarup [16] utilized only
the feasible solutions to find the feasible region first, and
then DE was employed to locate the optima in the certain
region. Park et al. [34] proposed an adaptive mechanism to
treat the constraints. Two tolerance thresholds for equality
and inequality constraints are set. The infeasible solutions are
modified iteratively till their constraints are less than the cer-
tain thresholds. Zaman et al. [15] utilized the ε-constrained
method to address the selection pressure from equality con-
straints. The tolerance for equality constraints is controlled
by the ε-parameter. In initial phase, the tolerance is set
to the maximum constraint violation according to the ini-
tial population, and then the tolerance gradually shrinks into
zero during the evolutionary progress. In these ways, the
search is mainly oriented toward the direction of the mini-
mum constraint violation, meanwhile, some useful information
provided by objective function is adopted to alleviate the
greediness.

Recently, multiobjective optimization [35]–[37] has also
been adopted to solving ED problems. The following part
describes one of the implementations:

Minimize F(x) = (FT ,G(x)) (3)

where G(x) is the overall constraint violation on the variable
vector x and can be calculated as follows:

G(x) =
m∑

j=1

Gj(x)
Gmax,j

(4)

where m is the total number of equality and inequality con-
straints, and Gmax,j is the maximum violation on the jth
constraint obtained in the initialization phase.

In this implementation, all the constraints are treated as
a separated objective [29]. In this way, an ED problem is
converted into an MOP.

There is an dominance relation defined between any two
individuals in multiobjective optimization. Given two variable
vectors x1 and x2, if f(x1) ≤ f(x2) with at least one strict
inequality, then x1 is said to dominate x2. Moreover, if there
does not exist any other variable vector x1 ∈ � such that x1
dominates x2, then x2 is called a nondominated solution. All
nondominated solutions form the Pareto set (PS). The Pareto
front (PF) is a set which is defined as {f(x)|x ∈ PS} [38].

The schematic of solving ED problems by multiobjective
optimization is plotted in Fig. 1. The point A in Fig. 1 is the
optimal solution of an ED problem, since its overall constraint
violation is 0, and its objective value is minimum. Meanwhile,
the point A is also an endpoint of the PF. When the PF of (3)
is found, the optimal solution A of an ED problem is also
found.

In [26], [28], and [29], the multiobjective optimization as
a constraint-handling technique was proposed to solve single
objective constrained optimization problems. The constraints
are treated as either independent objectives or an integrated

Fig. 1. Schematic of solving ED problems by multiobjective optimization.
The arc AE is the PF of (3). The global solution (A) of the original ED
problem lies on the endpoint of the PF.

objective. Due to a good balance between population diversity
and convergence, the multiobjective optimization evolutionary
algorithm (MOEA) can avoid premature convergence and local
optima efficiently. Combing with GA [39], PSO [40], [41],
and DE [42], [43], various variants based on multiobjective
optimization have been developed to solve ED problems.
Furthermore, in [15], a nondominated and crowding distance
mechanism was proposed as a selection strategy to deal with
objective function and constraints simultaneously. In [44],
multiobjective optimization is combined with feasibility rules
to handle constraints.

Moreover, for money savings, the global optimum is
always desirable in solving ED problems. To avoid local
optima, how to improve population diversity is another issue
in ED problems. So far, many efforts have been made.
Ciornei and Kyriakides [45] adopted an information shar-
ing strategy to keep population diversity in the search space.
Vlachogiannis and Lee [46] proposed a new concept of coor-
dinated aggregation to distribute the swarms. Selvakumar and
Thanushkodi [47] adopted the local random search to exploit
the promising area. In this way, the promising area identified
in the early stage cannot be missed. Sun et al. [33] preserved
population diversity by simulating the behavior of an electron
moving in a metal conductor placed in an external electric
field. Aragón et al. [23] used two versions of redistribution
power operators to keep population diversity in the feasible
regions that the search has found. As a result, the proposed
approach can provide high-quality optimal solutions for ED
problems.

For more details of constraint-handling techniques and
population diversity maintaining strategies for ED problems,
readers are referred to [4] and [5].

III. FORMULATION OF THE ED PROBLEM

A. Objective Function of the ED Problem

The classic objective function of the ED problem is the total
fuel cost of all generating units [21]. Without loss of generality,
the mathematical formulation of the classic objective function
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[13], [14], [32], [33] can be expressed as follows:

minimize FT =
N∑

i=1

Fi(Pi) (5a)

N∑

i=1

Fi(Pi) = ai + biPi + ciP
2
i (5b)

Pmin
i ≤ Pi ≤ Pmax

i (5c)

where FT is the total generation cost of a power system, i is
the index of generating units, N is the number of generators,
Fi, Pi, Pmin

i , and Pmax
i are the cost function, power output,

minimum and maximum power outputs of the generation i,
respectively, and ai, bi, and ci are the cost coefficients.

1) ED Problem With Valve-Point Effects: The valve-point
effects in large generating units make the fuel cost curve non-
linear. To simulate the valve-point effects in the mathematical
model, the sinusoidal function is employed. Therefore, the
quadratic function (5b) is modified as follows [13]:

Fi(Pi) = ai + biPi + ciP
2
i +

∣∣∣ei × sin
(

fi ×
(

Pmin
i − Pi

))∣∣∣
(6)

where ei and fi are the cost coefficients of valve-point effects
on generator i. It is obvious that if the valve-point effects
are considered in an ED problem, the objective function will
become nonconvex due to the sinusoidal function in (6).

2) ED Problem With Multifuels: In the real-world power
systems, the dispatching units are usually operated with mul-
tifuel sources. Hence, each unit should be represented with
several piecewise quadratic functions to reflect the effects of
different fuel types. The fuel cost function in the piecewise
formulation can be practically described as follows [13]:

Fi(Pi) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ai1 + bi1Pi + ci1P2
i , fuel 1, Pmin

i1 ≤ Pi ≤ Pmax
i1

ai2 + bi2Pi + ci2P2
i , fuel 2, Pmin

i2 ≤ Pi ≤ Pmax
i2

...
...

aij + bijPi + cijP2
i , fuel j, Pmin

ij ≤ Pi ≤ Pmax
ij

(7)

where j is the index of fuel types, aij, bij, and cij are the
cost coefficients of the generator i for the jth fuel type, Pmin

ij
and Pmax

ij are the minimum and maximum power outputs of
generator i by using the jth fuel type, and specifically, Pmin

i1 =
Pmin

i , Pmax
ij = Pmax

i , and Pmax
ik−1 = Pmin

ik for k = 2, . . . , j.
3) ED Problem With Valve-Point Effects and Multiple

Fuels: To obtain an accurate and practical solution for ED
problems, both valve-point effects and multifuels should be
considered in the mathematical formulation simultaneously. In
this article, the cost function integrated with (6) and (7) can
be realistically formulated in the following form [13], [21]:

Fi(Pi) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Fi1(Pi), fuel 1, Pmin
i1 ≤ Pi ≤ Pmax

i1
Fi2(Pi), fuel 2, Pmin

i2 ≤ Pi ≤ Pmax
i2

...
...

Fij(Pi), fuel j, Pmin
ij ≤ Pi ≤ Pmax

ij

(8)

where

Fij(Pi) = aij + bijPi + cijP
2
i +

∣∣∣eij × sin
(

fij ×
(

Pmin
ij − Pi

))∣∣∣
(9)

and eij and fij are cost the coefficients of valve-point effects
on the generator i for the jth fuel type.

B. Constraints of the ED Problem

In this article, the following constraints are considered to
formulate the final problem.

1) Active Power Balance Equation: To make power bal-
anced, the total power generated by the system should be
equal to the load demand of the system and the transmission
losses [8], [9], i.e.,

N∑

i=1

Pi = PD + PL (10)

where PD is the total system load demand, and PL is the total
transmission network loss. PL is usually approximated by the
Kron’s loss function [33], which is stated as follows:

PL =
N∑

i=1

N∑

j=1

PiBijPi +
N∑

i=1

B0iPi + B00 (11)

where Bij, B0i, and B00 are the loss coefficients or
B-coefficients.

2) Ramp Rate Limits: In the operating process of each on-
line unit, its operating range is restricted by ramp rate limits.
According to [33], the ramp limits can be expressed by the
inequality constraints as follows:

Pi − P0
i ≤ URi and P0

i − Pi ≤ DRi (12)

where P0
i is the previous power output of the generator i, and

URi and DRi are the up-ramp and down-ramp limits of the
generator i, respectively.

If the power output limits (5c) and the ramp limits (12)
are taken into account simultaneously, these two inequality
constraints can be rewritten as follows:

max
{

Pmin
i , P0

i − DRi

}
≤ Pi ≤ min

{
Pmax

i , P0
i + URi

}
. (13)

3) Prohibited Operating Zones: In some power systems,
the whole operating range of a generator is not always avail-
able because of the physical limitations. Hence, a generator
contains some prohibited operating zones in its operating
range. Considering the prohibited operating zones, the operat-
ing range of generator i can be approximated by the following
constraints [33], [34]:

Pi ∈

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

Pmin
i ≤ Pi ≤ Pl

i,1
...

Pu
i,k−1 ≤ Pi ≤ Pl

i,k, k = 2, . . . ,Npz
...

Pu
i,Npz

≤ Pi ≤ Pmax
i

(14)

where Pl
i,k and Pu

i,k are the lower and upper bounds of the
kth prohibited zone of generator i, and Npz is the number of
prohibited operating zones that generator i contains.
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IV. PRELIMINARY KNOWLEDGE

In this article, DE and niching methods are utilized in our
proposed approach DMOA. To have a better understanding,
we introduce them in this section briefly.

A. Differential Evolution

As a search engine, DE [48], [49] has been widely used
in many evolutionary algorithms to generate offspring. The
mutation and crossover operators in DE are briefly described
in this section.

1) Mutation: The most frequently used mutation strategy
is DE/rand/1. Three vectors are randomly selected from the
current population. Then, the mutation operator is performed
on them to generate a mutant vector v

vi = xr1 + F · (
xr2 − xr3

)
(15)

where i is the sequence number, F is the scale factor, and r1–r3
are three integers which are selected randomly. In addition,
r1 �= r2 �= r3 �= i.

2) Crossover: The crossover operator is performed to pro-
duce the trial vector ui consisting of parts of the target vector
xi and the mutant vector vi. Equation (15) shows a popular
binomial crossover operator

ui,j =
{

vi,j, if randj(0, 1) ≤ Cr, or j == jrand
xi,j, otherwise

j = 1, . . . , d

(16)

where Cr is the crossover rate and jrand is an integer which is
randomly chosen in the range {1, . . . , d}. The condition j =
jrand ensures the crossover operator be applied in at least one
dimension.

B. Niching Method

The niching method is commonly adopted to solve prob-
lems that contain multimodal domains and require identifying
multiple optimal solutions [50]. Among various niching meth-
ods, fitness sharing is a popular one [51]. As shown in Fig. 2,
the red points are three optima, including one global optimum
and two local optima. By punishing the individuals that inhabit
densely populated regions, the population will avoid converg-
ing to a single solution, i.e., the black points are individuals
scattered over the three attraction basins. In this article, the
niche count mi is utilized to construct an additional objective.
The mi can be calculated as follows:

mi =
N∑

j=1

sh(d(i, j)) (17)

where Np denotes the population size, d(i, j) is the distance
between two individuals i and j, and sh is a sharing function
which reflects the degree of similarity between two individu-
als. The most widely used form of the sh [51] is presented as
follows:

sh(d(i, j)) =
{

1 − (d(i, j)/σ ), if d(i, j) < σ

0, otherwise
(18)

where σ denotes a threshold of dissimilarity (also the niche
radius).

Fig. 2. Illustration of the niching method. The red dotted circles are three
niches. In these niches, similar individuals will be punished in order to main-
tain the population diversity. The three red points are the lowest points in
their respective attraction basins.

However, a critical limitation in fitness sharing is that it
requires a priori knowledge to set the dissimilarity thresh-
old σ .

V. PROPOSED ALGORITHM

In this section, the motivation behind DMOA is first
introduced. Then, following the motivation, an ED problem
is transformed into a TOP to be optimized. Finally, the
dynamic multiobjective optimization technique is systemati-
cally described to solve the converted problem.

A. Motivation

ED problems often have disconnected feasible regions
because of the discontinuous prohibited zones and ramp rate
limits. Therefore, the optimization problem would contain a lot
of local optima. Without good population diversity, the local
optimum information may cause premature convergence. Two
goals behind the motivation of our proposed approach are to:
1) enter the feasible regions as many as possible and 2) main-
tain the population diversity in each feasible region for locating
the feasible optimal solution.

To better understand our motivation, we construct an ED
problem with two disconnected crescent shaped (nonconvex)
feasible regions in Fig. 3. To solve this ED problem, the search
should find the feasible optimal solution (the point A) which
has the minimum distance to the origin O. As for the two
disconnected feasible regions, it can be seen that all the fea-
sible solutions in the left crescent shaped feasible region have
larger distances to O than the point A in the right crescent
shaped feasible region. However, the search is easy to enter
the left one which has a larger size. Therefore, the search
would fall into local optima (e.g., point A′) easily. Usually, an
algorithm cannot distinguish these two feasible regions with-
out a priori knowledge. Thus, the optimization performance
becomes worse when there are multiple disconnected feasible
regions.

For the first goal, we conditionally extend the feasible
regions to a larger area. As shown in Fig. 3, the larger light
shadow area enclosed by the arc PMQ and PNQ covers the two
feasible regions. Due to the larger area, the search has access
to enter both left and right feasible regions. For the second
goal, population diversity needs to be maintained to locate the
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Fig. 3. Plot of two feasible regions in relation to objective values. The two
crescent shaped areas are two disconnected feasible regions and the dashed
concentric arcs ε1, . . . , εk form an equi-infeasible contour. Points A and A′
are the nearest points to the origin O in the two feasible regions, respectively.

optimal solution A and avoid local stagnation at A′. However,
without a priori knowledge, we do not know which feasible
region the population diversity should be maintained. Hence,
we employ niching methods to enhance the whole population
diversity, so that more individuals have the probabilities to be
maintained in both left and right feasible regions. As a result,
with population diversity enhanced, the potential solutions and
their corresponding domains can be fully exploited.

To achieve above two goals, multiobjective optimization
as a constraint-handling technique is utilized in this article.
Comparing with the penalty function and the preference of
feasible solutions over infeasible solutions, the multiobjective
optimization handles constraints and optimizes objective func-
tion simultaneously. In this way, some infeasible solutions with
better objective values and less constraint violations can be
selected, and therefore, the premature convergence can be alle-
viated without any extra mechanism. More importantly, once
population diversity has been enhanced, it can be maintained
in a high level, since the multiobjective optimization already
has excellent performance in balancing population diversity
and convergence.

B. Tri-Objective Optimization Model

To apply multiobjective optimization, an MOP problem
needs to be constructed first.

To improve population diversity, niching methods are widely
employed. Usually, the niche count mi is used as a punishment
imposed on the raw objective function value. Hence, similar to
the disadvantage of penalty function methods, the performance
of niching methods is sensitive to the niche radius σ . On
the other hand, the niching method cannot be employed on
the objective function values directly when multiobjective
optimization is applied, since the PF would be changed.

Moreover, if the valve-point effects are considered, the
problem may contain many local optima. To locate the global

optimum efficiently, the niching method is utilized to distin-
guish different individuals by their degrees of crowding. In
this article, an additional objective named density objective is
constructed based on the niche count mi in (17). Thus, an ED
problem is finally transformed into a TOP

minimize F(x) = (FT ,G(x),D(x))

subject to Pmin
i ≤ xi ≤ Pmax

i , i = 1, . . . ,N (19)

where D(x) is the proposed density objective, and D(x) = mi.
Afterward, in order to balance population diversity

and convergence, multiobjective optimization techniques are
employed to optimize these three objective functions simul-
taneously. When solutions are nondominated in the case of
two objectives, FT and G(x), they are still nondominated in
the case of three objectives, FT , G(x), and D(x), so introduc-
ing D(x) does not degrade the search capability. Conversely,
the individuals with lower D(x) values can survive longer,
whereby the domains occupied by these individuals will be
fully exploited. This is the reason why the density objective
D(x) can improve the search ability during the evolutionary
process.

C. Shrinkage Scheme

However, if we remain the light shadow area unchanged,
infeasible solutions in this area would survive for a long time
and waste computational resources unnecessarily. Hence, we
gradually shrink the light shadow area from a large size to the
original feasible regions, i.e., from ε1 to εk. As shown in Fig. 1,
except for endpoint A, the PF of (3) contains all the nondom-
inated solutions which violate the constraints. These solutions
are undesirable in the final result. One reason is that these solu-
tions are useless for the original ED problem, because they do
not satisfy the constraints. The second reason is that remov-
ing these inferior solutions can save a lot of computational
resources which would be very precious, especially when the
simulation experiments are time-consuming. However, during
the evolutionary process, some special inferior solutions may
still carry some useful information. For example, in Fig. 1, the
nondominated point B violates the constraints slightly, while
its objective value is smaller than A. Its objective function
information is useful to find minimum generating cost and
prevent the search from falling into local optima.

To deal with the above issue, a shrinkage scheme [52] is
utilized to narrow down the range of the PF. The shrinkage
scheme can be modeled as follows:

εt = T0

(
1 − t − 1

tmax − 1

)cp

, t = 1, . . . , tmax (20)

where εt is the tolerance for the overall constraint violation
in the t-th generation, To is an initial tolerance in the first
generation, tmax denotes the maximum number of generations,
and cp is the control parameter of the shrinkage speed.

On the other hand, the niching radius σ should also be
controlled by a shrinkage scheme. There are two reasons for
dynamically adjusting the niche radius σ .

1) For DMOA solving ED problems, the evolutionary pro-
cess, which starts from the initial search region to the
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feasible region, determines that the niche radius cannot
be a constant in order to match the boundary shorten-
ing. Furthermore, when the search enters the feasible
region, the final aim is to find the best feasible solu-
tion rather than a set of nondominated solutions. This
determines that D(x) should be 0 in the final genera-
tion. Hence, niche radius σ should be set to 0 to control
D(x) to be 0. Based on these factors, the niche radius
should gradually shrink from an initial value to 0 in our
proposed method.

2) In DMOA, the niching method is integrated with
multiobjective optimization by constructing an addi-
tional objective, rather than acting on the raw objective
function value as a punishment. Nevertheless, no mat-
ter which form is adopted, the niching method aims
at enhancing the population diversity and deal with
multimodal domains. However, without a prior knowl-
edge, we do not know whether the valve-point effects
are considered or not in a given ED problem. Hence, if
the population diversity is enhanced blindly by the nich-
ing method, it even has a negative influence on the ED
problem without the valve-point effects. To make the
algorithm more robust, the niche radius σ is also con-
trolled by the shrinkage scheme so that a specific niche
radius cannot make a long-term impact.

Generally, the main idea of the shrinkage scheme is to set
an initial boundary (tolerance) for the search region at the
beginning, and then gradually shorten the boundary (tolerance)
to the feasible region. In the meantime, the range of PF
becomes narrower and narrower from AE → AD → AB → A.
During the shrinkage, the solutions inside the search region
enclosed by the current boundary are kept evolving. This
makes the multiobjective optimization only work inside the
boundary. Otherwise, the solutions outside the boundary will
be removed to help all individuals move toward the feasible
region.

D. Dynamic Pareto Dominance Relation

The static Pareto dominance relation introduced in
Section II is unsuitable to the shrinkage scheme, and hence
a modified variant named dynamic Pareto dominance relation
is proposed to compare two individuals v and u as follows.

1) If both G(v) ≤ εt and G(u) ≤ εt, then the original Pareto
dominance relation is used to compare v and u according
to (FT(v),G(v),D(x)) and (FT(u),G(u),D(x)).

2) If G(v) ≤ εt and G(u) > εt, then v dominates u, and
vice versa.

3) If both G(v) > εt and G(u) > εt, then the one with
smaller overall constraint violation dominates the other.

It can be seen that the dynamic Pareto dominance relation is
analogous to the original version. As for the first rule, if the
overall constraint violations of the two individuals are less than
the current tolerance εt, the two individuals are considered in a
pure multiobjective optimization environment. Otherwise, the
second and third rules would be preferred to push the search
toward the feasible region based on the overall constraint
violation.

Algorithm 1: DMOA
Initialization:

• Randomly generate an initial population with Np

individuals from decision space S.
while t < tmax do

t = t + 1;
Shrink the Constraint Violation Tolerance and
Niche Radius: εt → εt+1, σt → σt+1;
Generate offspring population(set Q) from parent
population(set P);
Compute f and G(x) values for each individual in Q;
Update xbest;
P = P

⋃
Q;

Compute D(x) value for each individual in P;
Apply the nondominant sorting method to truncate
the population size of P from 2Np to Np;

end
Output xbest.

E. Overall DMOA Algorithm

The pseudocode of DMOA is presented in Algorithm 1. In
DMOA, each generation t contains all the stated parts.

1) A population in size Np, Pt = x1,t, . . . , xNp,t.
2) Three objective values for each individual, (FT , G(xi,t),

D(xi,t)), i = 1, . . . ,Np.

3) The niche radius σt.
4) The constraint violation tolerance et.
5) The best solution found so far xbest.
The density objective D(x) and the shrinkage scheme are

two important components in DMOA. Besides, DE is utilized
as a search engine to generate offspring in each genera-
tion. Specific details of the proposed algorithm are given
below.

1) Initialization: In the first generation, NP individuals are
randomly generated based on the minimum and max-
imum power outputs. Then, for each individual, its
objective function value FT and constraint violation
Gj(x) are calculated based on the given ED problem.
Subsequently, the overall violation objective G(x) in (4)
is achieved, and the tolerance T0 is initiated by the
maximum value of G(x).

2) Shrink the Constraint Violation Tolerance and Niche
Radius: In each generation, the values of tolerance
for overall constraint violation and niche radius are
adjusted by (20). To shrink the niche radius, the
parameters εt and T0 are replaced by σt and σ0,
respectively.

3) Nondominant Sorting Method: When Np offspring
have been generated, the famous nondominated sort-
ing method in NSGA-II [53] is used to truncate the
population size from 2Np to Np. As described in
Section IV-C, the dynamic Pareto dominance rela-
tion replaces the original Pareto dominance rela-
tion to compare two individuals in the diminishing
environment.
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VI. EXPERIMENTAL STUDY

In this section, the performance of DMOA is assessed on
CEC 2006 test functions [54] and seven case studies of ED
problems. The obtained results are compared with several
state-of-the-art algorithms, respectively. Finally, the effective-
ness of the density objective D(x) and the shrinkage scheme
are analyzed.

A. Parameter Setting

It is worth noting that DMOA does not introduce any new
parameter. The population size Np is set to 100. According to
the recommendation in [21] and [55], the maximum generation
number tmax for each CEC 2006 test function and test power
system are set to 2400 and 3000, respectively. The parameters
of the components of the proposed algorithm come from the
original literatures where the corresponding operators are put
forward. For each target vector in DE operators, F and Cr are
randomly selected from the scaling factor pool {0.6, 0.8, 1.0}
and the crossover rate pool {0.1, 0.5, 1.0}, respectively. In
the shrinkage scheme, cp is set to the recommended value
−3 − log(T0)/log(0.5) in [52]. The initial niching radius σ0

is set to
√∑N

j=1(P
max
i − Pmin

i ) which is the longest Euclidean
distance in the decision space. The tolerance parameter δ is set
to 0.0001 [56] for the equality constraints. Each test function
is run 25 independent trials.

B. Experiment With CEC 2006 Benchmark Functions

In this experiment, DMOA has been undertaken on 24
CEC 2006 test functions which have been widely used for
algorithm evaluations. More details of these benchmarks can
be found in [54]. Results for performance comparison with
six state-of-the-art EAs are presented in Table S1 (see the
supplementary material). The six EAs are APFGA [22],
CCiALF [57], SAMODE [58], εDE [52], jDE-2 [59], and
ECHT-EP2 [55]. The statistical results of the six algorithms
are obtained from the original articles. The maximum fit-
ness evaluations (Max_FEs) of APFGA, εDE, and jDE-2 are
5×105, while the Max_FEs of DMOA, ECHT-EP2, CCiALF,
and SAMODE are 2.4 × 105. Because none of the algorithms
can solve problems g20 and g22, comparisons and analyses
are undertaken in the remainder 22 test functions.

It can be seen from Table S1 (see the supplementary mate-
rial) that DMOA finds globally optimal solutions for all 22 test
functions, while APFGA, CCiALF, SAMODE, εDE, jDE-2,
and ECHT-EP2 can only find the globally optimal solutions
for 14, 17, 14, 20, 14, and 14 test functions, respectively.
It is worth noting that DMOA is not trapped in local opti-
mum for all of the 22 test functions. On the two functions
g02 and g17, the result of DMOA is substantially better than
the other six algorithms. On the 15 functions g01, g03–g09,
g11–g16, and g24, DMOA performs as good as the others.
With regard to the mean value, the DMOA is better than
APFGA, CCiALF, SAMODE, εDE, jDE-2, and ECHT-EP2 on
eight, five, eight, two, eight, and eight test functions, respec-
tively. Based on these comparisons, the DMOA outperforms
the other six state-of-the-art algorithms.

TABLE I
WILCONXON SIGNED RANKS TEST RESULTS FOR DMOA VERSUS

APFGA, CCIALF, SAMODE, εDE, JDE-2, AND ECHT-EP2

Fig. 4. Friedman ranks for DMOA, APFGA, CCiALF, SAMODE, εDE,
jDE-2, and ECHT-EP2.

Furthermore, two nonparametric statistical tests, Friedman’s
and Wilcoxon’s tests [60], are conducted via KEEL soft-
ware [61] to figure out the significance of difference between
the performance of DMOA and the others six EAs, using
the mean of the cost values obtained in all 25 trials as the
tested variable. As presented in Table I, pairwise comparisons
between DMOA and the others six EAs are made through
Wilcoxon’s test. It is shown that DMOA offers a significant
improvement over APFGA, CCiALF, SAMODE, jDE-2, and
ECHT-EP2 at the significance level of α = 0.1. Even though it
fails to show significant difference between DMOA and εDE,
DMOA can solve all the 22 test functions while εDE only
solves 20. Moreover, the Max_FEs required by εDE are twice
more than that required by DMOA. On the other hand, the
result of Friedman’s test presented in Fig. 4 also proves the
superiority of DMOA over the other six EAs, for DMOA has
the smallest Friedman rank value. Taking all these results into
account, DMOA has a relatively better performance than the
other six EAs.

C. Case Study

In this section, six real-world power systems with seven
cases are adopted to assess the performance of the proposed
DMOA. As for the first five cases, each of them includes
an independent power system [13], [32]–[34], [62]. The
last two cases come from the standard IEEE 30-bus test
system [63], [64]. The practical features of the seven cases
are summarized in Table II. Furthermore, to have a better
performance assessment of DMOA, the minimum cost, aver-
age cost, standard deviation, and the best solution obtained in
25 independent trials are recorded for each case study. The
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TABLE II
TEST POWER SYSTEM CONSIDERED FOR VALIDATION OF PROPOSED SOLUTION METHODOLOGY

TABLE III
TEST VALUES OBTAINED BY GA, TSA, CBA, PSO, RDPSO,

ST-IRDPSO, AND DMOA FOR SYSTEM 1

objective function value and the overall constraint violation
against generation number for each case are also illustrated as
the convergence analysis. Here the current best-known solu-
tion is considered to reflect the convergence speed of DMOA.
In each generation, the current best-known solution is updated
if there is a solution: 1) whose overall constraint violation is
less than that of the best-known solution or 2) whose objec-
tive function value is less than that of the best-known solution
and overall constraint violation is no more than that of the
best-known solution.

1) Test Power System 1: This power system consists of six
thermal units, 26 buses, and 46 transmission lines. Meanwhile,
the prohibited operating zones, ramp rate limit, and transmis-
sion losses are involved in the constraints. The parameters,
i.e., the cost coefficients, loss coefficients, and ramp rate lim-
its data of this system, can be referred to [32]. Table III shows
a comparison between the results obtained by DMOA and
the other state-of-the-art algorithms (i.e., GA [32], TSA [65],
CBA [66], PSO [67], RDPSO [33], and ST-IRDPSO [21]). All
results obtained by the above algorithms satisfy the constraints
of this test power system. The best results are highlighted in
boldface. The convergence speed is plotted in Fig. S1 (see the
supplementary material).

It can be observed from Table III that the minimum cost and
average cost values obtained by DMOA are much better than
those of the compared algorithms. The standard deviation indi-
cates that DMOA is much more stable than the others in the
25 independent repeated trials. From Fig. S1 (see the supple-
mentary material), it can be observed that the optimal solution
can be located in less than 2500 generations, and both black
and red cures decrease relatively stably. Actually, the shrinkage
scheme has a great influence on the convergence speed because
the individuals whose overall constraint violations are less than
the violation tolerance can survive in the corresponding envi-
ronment. Meanwhile, by utilizing multiobjective optimization
techniques, the objective function and constraints can be min-
imized simultaneously. As a result, the search does not always

TABLE IV
TEST VALUES OBTAINED BY DE, GA, CPSO, PSO,

SPSO, CTPSO, AND DMOA FOR SYSTEM 2

converge to the solution with the minimum overall constraint
violation, and hence its convergence speed is slightly impaired.
Moreover, the details of the optimal solution are presented in
Table S2 (see the supplementary material). According to each
variable of the obtained optimal solution, this power system
can satisfy all the requirements with the minimum generating
cost.

2) Test Power System 2: This test power system contains
a medium number of thermal units. The cost coefficients,
loss coefficients, and ramp rate limits data are referred
to [33]. There are 12 inequality constraints involved.
Hence, this test power system is more difficult than
system 1.

Table IV provides the minimum, average cost values,
and the standard deviation achieved by DE [33], GA [32],
CPSO [68], PSO [67], SPSO [33], CTPSO [34], and DMOA
algorithms on this test power system. Table S3 (see the supple-
mentary material) provides the details of the globally optimal
solution obtained by DMOA. It is clear that DMOA obtains
the minimum cost value in every independent trial. DMOA
shows a significant improvement compared with the other six
evolutionary algorithms, which further proves the stability of
our proposed algorithm to solve ED problems. The CTPSO
is also a stable evolutionary algorithm. However, based on
the statistic results, it is easier than DMOA to get stuck
in local optimal. Moreover, Fig. S2 (see the supplementary
material) displays the convergence graph of our proposed
algorithm.

3) Test Power System 3: In this case, the test power system
with multifuels and valve-point effects are employed to eval-
uate the performance of our proposed algorithm. The power
system consists of ten generating units and adopts three dif-
ferent fuel types. A comprehensive description of this power
system can be referred to [13].

To have a better understanding, the proposed DMOA are
compared with six state-of-the-art evolutionary algorithms,
i.e., DE [69], IGA-MU [13], ARCGA [69], CCEDE [70],
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TABLE V
TEST VALUES OBTAINED BY DE, IGA-MU, ARCGA, CCEDE,

RDPSO, ST-IRDPSO, AND DMOA FOR SYSTEM 3

CTPSO [34], and RDPSO [33], and the comparison results are
summarized in Table V. The best results are highlighted, and
“NA” indicates that the data are not available. The details of
the optimal solution are presented in Table S4 (see the supple-
mentary material). It can be seen that DMOA obtains the best
values for minimum and average costs in the 25 independent
trials compared with the other six algorithms. As for the min-
imum cost value, DMOA significantly outperforms the cited
heuristic algorithms, DE, IGA-MU, and RDPSO, and better
than ARCGA, CCEDE, and ST-IRDPSO. This is very impor-
tant for a multifuels power system, since it can economize
remarkable consumption of the fossil fuel. As for the average
cost value and standard deviation, DMOA is more stable than
the other six algorithms to locate the globally optimal solution
on test power system 3. The convergence graph of DMOA is
plotted in Fig. S3 (see the supplementary material). It can be
observed that the optimal solution can be located at a very fast
speed.

4) Test Power System 4: This test power system is a
medium-scale one. It has 40 generating units, and the valve-
point effects are considered in all the units. The cost
coefficients of this system can be referred to [62]. Since each
cost function is nonconvex, there are a number of local optima
in this test power system. Hence, this system is employed to
investigate the global search ability of DMOA for multimodal
ED problems. The six state-of-the-art evolutionary algorithms,
CE-SQP [71], DE [72], CSA [73], IA-EDP [23], RDPSO [33],
and ST-IRDPSO [21], are adopted for comparison. Table VI
gives the statistical results achieved by these seven algorithms
on this test power system.

It can be observed that the ST-IRDPSO finds the mini-
mum cost value $121412.535h−1, followed by the DMOA
whose minimum cost value is $121412.5443h−1, but when
considering the average cost value, DMOA outperforms the
other six EAs. The minimum cost values obtained by CE-
SQP, CGRASP-SaDE, ST-IRDPSO, and DMOA have very
slim differences. However, their standard deviation values are
significantly different. DMOA achieves the best followed by
ST-IRDPSO, indicating the higher stability of DMOA in solv-
ing medium-scale test power system with nonconvex cost
functions. Table S5 (see the supplementary material) provides
the power output of each generating unit of the best solution
obtained by DMOA, and Fig. S4 (the supplementary material)
displays the convergence graph.

5) Test Power System 5: To investigate our proposed algo-
rithm in dealing with large-scale ED problems, a test power

TABLE VI
TEST VALUES OBTAINED BY CE-SQP, DE, CSA, IA-EDP,

RDPSO, ST-IRDPSO, AND DMOA FOR SYSTEM 4

TABLE VII
TEST VALUES OBTAINED BY GWO, IDE, MTLA, CTPSO,

RDPSO, ST-IRDPSO, AND DMOA FOR SYSTEM 5

system with 140 generating units is utilized for testing. This
system is derived from the power system of South Korea [34].
The valve-point effects, prohibited operating zones, ramp rate
limits are all considered in this system. That is, this test power
system contains not only large-scale generating units but also
a large number of constraints. Hence, it is difficult for many
heuristic algorithms to optimize. To evaluate the performance
of our proposed algorithm, the six algorithms (i.e., GWO [74],
IDE [75], MTLA [76], CTPSO [34], RDPSO [33], and ST-
IRDPSO [21]) are adopted for comparison. Table VII gives
the statistical results achieved by these seven algorithms on
this test power system.

The best solution obtained by DMOA is presented in
Table S6 (see the supplementary material) and the conver-
gence graph is shown in Fig. S5 (see the supplementary
material). It can be observed that the minimum cost value is
$1559708.4550h−1, which is smaller than those of the other
six evolutionary algorithms. The average cost value and the
standard deviation indicate that the performance and stabil-
ity of the DMOA are better than those of the six algorithms,
especially better than the RDPSO, ST-IRDPSO, and GWO
which have similar performance in minimum cost values.
Furthermore, the average cost value obtained by DMOA is
close to the minimum cost value, indicating that our proposed
algorithm is more suitable for real-world power system for
the reason that it is impossible to do a lot of independent
repeated trials to find a minimum value by a given algo-
rithm, since a large-scale power system optimization is usually
time-consuming in real world.

Based on the excellent performance of DMOA on the five
cases, it can be concluded that DMOA has the extraordi-
nary ability to solve real-world ED problems with different
characteristics.

6) Test Power System 6: In the following two cases, DMOA
is tested on the standard IEEE 30-bus test system in which the
constraints and objective function are more complex because
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TABLE VIII
TEST VALUES OBTAINED BY ENHANCED GA, PSO, BBO, GRADIENT

METHOD, EADDE, GSA, AND DMOA FOR SYSTEM 6

of some indirectly involved control variables. The system
parameter settings are given in [63].

In this case, the objective function form is quadratic as
formulated in (5b). The obtained minimum, average and max-
imum costs of DMOA is compared with enhanced GA [77],
PSO [64], BBO [78], gradient method [79], EADDE [80], and
GSA [63] are shown in Table VIII. The minimum fuel cost
obtained by DMOA are $793.836h−1, and the corresponding
solution is presented in Table S7 (see the supplementary mate-
rial). The convergence graph of DMOA for the solution is
shown in Fig. S6 (see the supplementary material). It can be
seen that the overall constraint violation decreases to less than
1.0E-03 after 100 generations, which indicates that DMOA
handles the constraints at a fast speed. For the comparison
in Table VIII, the result of DMOA is 0.60% and 0.66% less
than the previously reported minimum fuel cost $798.675h−1

and $799.111h−1 obtained by GSA and BBO, respectively.
The average cost obtained by DMOA is $795.788h−1 which
is also better than the results of the compared algorithms.

7) Test Power System 7: In this case, objective functions of
units 1 and 2 are dissevered as piecewise quadratic curves to
simulate the valve-point effects and multiple fuels in (8). The
corresponding cost coefficients for these two units are given
in [63]. The remaining parameter settings and coefficients are
set with the same values in case study 6.

Since the valve-point effects and multiple fuels are con-
sidered, there are several local optimal solutions, and hence,
the search is susceptible to falling into local optima. The
performance of the proposed DMOA is investigated in this
case, and compared with BBO [78], DE [81], PSO [64],
MDE [82], and GSA [63]. The comparison results are sum-
marized in Table IX, and the control variables corresponding
to the minimum fuel cost are given Table S8 (see the sup-
plementary material). The minimum fuel cost and the average
cost obtained by DMOA are $643.599h−1 and $644.538h−1,
respectively. The corresponding costs obtained by the followed
approach GSA are $646.848h−1 and $646.896h−1, respec-
tively. The convergence graph of DMOA is plotted in Fig. S7
(see the supplementary material). It can be seen that the overall
constraint violation curve descends consistently in the whole
stage, while the fuel cost curve shows a faster rate of decline
in the early stage than that in the middle and later stages. The
two curves imply that DMOA not only focuses on handling
constraints in the early stage but also optimizing the objective
function, and therefore, chances are that the local optima can
be avoided in the later stage.

TABLE IX
TEST VALUES OBTAINED BY BBO, DE, PSO, MDE,

GSA, AND DMOA FOR SYSTEM 7

D. Further Discussion

1) Effectiveness of the Density Objective: In our proposed
algorithm, the fitness sharing is utilized to construct an addi-
tional objective that reflects the degree of crowding of each
individual in its current generation. To investigate the valid-
ity of the density objective, a variant of DMOA, denoted as
DMOA1, is generated. In DMOA1, there are only two objec-
tives which are FT and G(x). The parameters in DMOA1
are kept unchanged except the niching radius which is also
discarded.

Table S9 (see the supplementary material) presents the sta-
tistical results of the four test power systems for DMOA and
DMOA1. It can be observed that both DMOA and DMOA1
can find the optimal solution with the minimum cost value,
but the average cost value obtained by DMOA for each power
test system is smaller than that obtained by DMOA1, espe-
cially for the test power systems 4 and 5. This indicates that
the additional objective can improve the search ability to deal
with the ED problems with the characteristic of multimodality,
even for large-scale ones. In the evolutionary process, the
number of nondominated solutions may increase because a
dominated solution with regard to FT and G(x) can become a
nondominated solution due to its lower value of D(x). These
nondominated solutions can survive in the next generation.
By prolonging the survival of individuals with low values of
D(x), the population diversity can be enhanced. As a result, the
local optima can be effectively avoided. Moreover, the density
objective does not impair the search ability to locate global
optimum for the other kinds of ED problems. Table S9 (see
the supplementary material) shows that DMOA still outper-
forms DMOA1 on test power systems 1–3 with regard to the
average cost values.

Furthermore, to investigate the convergence speed influ-
enced by the density objective, convergence graphs for DMOA
and DMOA1 on the test power systems 4 and 5 are plot-
ted in Figs. 5 and 6. It can be seen that DMOA1 converges
faster than DMOA with regard to objective function value and
the overall constraint violation. This is because the density
objective prolongs the survival of the sparse individuals, and
thus the search takes more time to exploit the domains where
these kinds of individuals stay. However, the density objective
does not impair the convergence speed seriously. From Figs. 5
and 6, it can also be seen that the blue and orange curves
just slightly lag behind the black and red curves, respectively.
Furthermore, Tables III–IX show that DMOA is not the slow-
est with regard to the average time, except test power systems
3 and 5. Even though DMOA costs a little more time in test
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Fig. 5. Comparison of convergence performance between DMOA and
DMOA1 for Test Power System 4.

Fig. 6. Comparison of convergence performance between DMOA and
DMOA1 for Test Power System 5.

power systems 3 and 5, the run time of DMOA is much less
than the 5-min interval, which usually is the maximal run time
requirement for ED problems [21]. It indicates that the density
objective applied in DMOA is applicable to solve real-world
ED problems.

2) Effectiveness of the Shrinkage Scheme: As mentioned
in Section IV-B, the range of PF gradually becomes narrow
under the control of the shrinkage scheme. To validate its
effectiveness in DMOA, a variant named DMOA2 is gener-
ate to solve the five test power systems without the shrinkage
scheme. Table S10 (see the supplementary material) provides
the statistic results for DMOA and DMOA2.

As shown in Table S10 (see the supplementary material), the
DMOA2 performs much worse than DMOA. DMOA2 cannot
even consistently locate the feasible solutions in all indepen-
dent trials. As plotted in Fig. 1, on the one hand, when the
shrinkage scheme is not applied, the search should locate the
endpoint A from the whole range of the initial PF. On the other
hand, most points on the initial PF are infeasible solutions.
Hence, it is difficult for DMOA2 to find the global optimum
A accurately. This verifies that utilizing the multiobjective
optimization techniques in the diminishing environment is very
effective.

3) Effect of the Multiobjective Optimization in Shrinkage
Scheme: It is interesting to observe in Figs. S1 and S2 (see the
supplementary material), that the black curve does not always
descend throughout the evolutionary process, while the red
curve always declines during the whole stage. The reason is
that before entering the feasible region, some individuals with

small overall constraint violations have larger objective val-
ues. Nevertheless, DMOA does not fall into local optima with
this kind of individuals. We attribute the above behavior to
the fact that the multiobjective optimization takes its advan-
tage of making a good balance between population diversity
and convergence to amend the population generation by gen-
eration. Meanwhile, since the extended region enclosed by
εt shrinks slightly in each generation, there is not a seri-
ous impairment caused by the environment change. Hence,
multiobjective optimization has enough time to amend the
search bias introduced by the attraction basins whose gradient
values are very large. As a result, the search can avoid falling
into local optima, and finally locate the global optimum.

VII. CONCLUSION

This article has proposed a dynamic multiobjective model to
solve ED problems. To combine multiobjective optimization
techniques with niching methods, the sharing function is uti-
lized to construct an additional objective. The performance of
DMOA is evaluated on 22 CEC 2006 test functions and seven
real-world test power systems with different characteristics.
The experimental results have demonstrated that DMOA per-
forms better or at least competitive with the state-of-the-art
algorithms, especially for the large-scale systems. Moreover,
the effectiveness of the additional objective and the shrinkage
scheme is also investigated on the five test power systems. The
investigations validate that the shrinkage scheme is efficient in
handling the constraints, and our proposed additional objec-
tive improves the search ability and the stability of DMOA for
ED problems. Furthermore, the experiments also validate the
feasibility of utilizing multiobjective optimization techniques
to optimize an ED problem.
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TABLE S1
EXPERIMENTAL RESULTS OBTAINED BY DMOA, APFGA, CCIALF, SAMODE, εDE, JDE-2 AND ECHT-EP2 FOR CEC 2006 TEST FUNCTIONS

Problem and its best DMOA APFGA CCiALF SAMODE εDE jDE-2 ECHT-EP2
known solution FEs 2.4E+05 2.4E+05 2.4E+05 5.0E+05 5.0E+05 5.0E+05 2.4E+05

G01 Mean -15.0000 -15.0000 -15.0000 -15.0000 -15.0000 -15.0000 -15.0000
-15 std 0.00E+00 0.00E+00 2.40E-08 0.00E+00 0.00E+00 0.00E+00 0.00E+00
G02 Mean -0.8036 -0.8027 -0.793 -0.7987 -0.8036 -0.8015 -0.7998

-0.8036 std 1.1E-06 1.00E-04 8.30E-03 8.80E-03 1.75E-08 4.90E-03 6.20E-03
G03 Mean -1.0005 -1.0005 -1.0005 -1.0005 -1.0005 -0.6624 -1.0005

-1.0005 std 8.31E-13 0.00E+00 1.70E-08 0.00E+00 2.96E-31 1.00E-01 0.00E+00
G04 Mean -30665.5386 -30665.5386 -30665.5386 -30665.5386 -30665.5386 -30665.5386 -30665.5386

-30665.5387 std 3.67E-12 1.00E-04 9.80E-06 0.00E+00 0.00E+00 1.80E-12 0.00E+00
G05 Mean 5126.4967 5127.5423 5126.4967 5126.4967 5126.4967 5127.5726 5126.4967

5126.4967 std 2.22E-12 1.40E+00 9.10E-08 0.00E+00 0.00E+00 2.40E+00 0.00E+00
G06 Mean -6961.8138 -6961.8139 -6961.8139 -6961.8138 -6961.8139 -6961.8139 -6961.8139

-6961.8139 std 0.00E+00 0.00E+00 5.10E-11 0.00E+00 0.00E+00 0.00E+00 0.00E+00
G07 Mean 24.3062 24.3062 24.3062 24.3096 24.3062 24.3062 24.3063

24.3062 std 4.90E-08 0.00E+00 6.80E-07 1.50E-03 2.18E-15 1.40E-05 3.19E-05
G08 Mean -0.0958 -0.0958 -0.0958 -0.0958 -0.0958 -0.0958 -0.0958

-0.0958 std 1.38E-17 0.00E+00 1.00E-15 0.00E+00 1.23E-32 3.80E-18 0.00E+00
G09 Mean 680.6300 680.6300 680.6300 680.6300 680.6300 680.6300 680.6300

680.63 std 1.05E-10 0.00E+00 5.40E-08 1.10E-05 0.00E+00 7.90E-14 2.60E-08
G10 Mean 7049.2480 7077.6821 7049.2480 7059.8134 7049.2480 7049.2480 7049.249

7049.248 std 2.10E-04 5.10E+01 6.00E-07 7.80E+00 4.24E-13 1.50E-06 6.60E-04
G11 Mean 0.7499 0.7499 0.7499 0.7499 0.7499 0.7499 0.7499

0.7499 std 1.11E-16 0.00E+00 2.00E-16 0.00E+00 0.00E+00 0.00E+00 0.00E+00
G12 Mean -1.0000 -1.0000 -1.0000 -1.0000 -1.0000 -1.0000 -1.0000
-1.0 std 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
G13 Mean 0.0539 0.0539 0.0539 0.0539 0.0539 0.7454 0.0539

0.0539 std 1.34E-14 0.00E+00 4.00E-06 1.70E-08 0.00E+00 2.20E-01 1.00E-12
G14 Mean -47.7648 -47.7647 -47.7648 -47.6811 -47.7648 -47.7648 -47.7647

-47.7649 std 1.24E-10 1.00E-04 4.00E-08 4.00E-02 1.39E-15 6.40E-05 2.70E-05
G15 Mean 961.7150 961.7150 961.7150 961.7150 961.7150 961.7194 961.7150

961.715 std 5.68E-13 0.00E+00 1.80E-08 0.00E+00 0.00E+00 2.20E-02 2.00E-13
G16 Mean -1.9051 -1.9051 -1.9051 -1.9051 -1.9051 -1.9051 -1.9051

-1.9051 std 9.32E-16 0.00E+00 9.70E-09 0.00E+00 1.58E-30 0.00E+00 1.12E-10
G17 Mean 8853.5338 8888.4876 8916.856 8853.5397 8853.5397 8888.5397 8853.5397

8853.5338 std 1.73E-10 2.90E+01 3.60E+01 1.10E-05 1.21E-27 3.60E-17 2.13E-08
G18 Mean -0.8660 -0.8659 -0.8660 -0.8660 -0.8660 -0.8660 -0.8660

-0.866 std 1.01E-08 0.00E+00 3.50E-07 7.00E-07 2.18E-17 3.60E-17 1.00E-09
G19 Mean 32.6555 32.6555 32.6607 32.7573 32.6556 32.6555 32.6623

32.6556 std 1.40E-05 0.00E+00 2.30E-04 6.10E-02 1.26E-05 7.20E-10 3.40E-03
G21 Mean 193.7245 199.5158 193.7352 193.7713 193.7245 204.2026 193.7438

193.7245 std 7.54E-06 2.30E+00 1.20E-02 1.90E-02 3.34E-14 3.60E+01 1.60E-02
G23 Mean -400.0551 -394.7627 -400.0536 -360.8176 -400.0551 -387.9531 -373.2178

-400.0551 std 1.64E-06 3.80E+00 5.00E-03 1.90E+01 1.11E-14 5.90E+01 3.30E+01
G24 Mean -5.5080 -5.5080 -5.5080 -5.5080 -5.508 -5.5080 -5.5080

-5.508 std 8.88E-16 0.00E+00 1.00E-08 0.00E+00 2.52E-29 0.00E+00 1.80E-15

TABLE S2
OBTAINED OUTPUT POWER OF TEST SYSTEM 1 BY DMOA

P1 P2 P3 P4 P5 P6

447.1089 173.4528 264.1909 139.3316 165.8509 85.6368

Total Cost ($/h) 15444.7468

Total power (MW) 1275.5722

Total losses (MW) 12.5722
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Fig. S1. Convergence graph of DMOA for Test Power System 1.
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TABLE S3
OBTAINED OUTPUT POWER OF TEST SYSTEM 2 BY DMOA

Output Power

P1 ∼ P10 454.9999 379.9999 129.9999 130.0 169.9999 459.9999 429.9999 69.4563 60.1232 159.9999

P11 ∼ P15 79.9999 79.9999 25.0000 15.0000 15.00000 Total power (MW) 2659.5796 Total losses (MW) 29.5796

Total Cost ($/h) 32692.34568
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Fig. S2. Convergence graph of DMOA for Test Power System 2.

TABLE S4
OBTAINED OUTPUT POWER OF TEST SYSTEM 3 BY DMOA

Output Power

P1 ∼ P10 218.5939 211.4641 280.6570 239.6394 279.9345 239.6394 287.7274 239.6394 426.8357 275.8686

Total power (MW) 2700.0000 Total Cost ($/h) 623.8265

1.0E-09

1.0E-08

1.0E-07

1.0E-06

1.0E-05

1.0E-04

1.0E-03

1.0E-02

1.0E-01

1.0E+00

6.10

6.20

6.30

6.40

6.50

6.60

6.70

6.80

6.90

7.00

7.10

7.20

0 1000 2000 3000 4000 5000 6000

O
v

er
al

l 
V

io
la

ti
o
n

T
o

ta
l 

C
o

st
 (

$
/h

)
x

1
0

2

Generations

Objective Convergence

Constraints Convergence

Fig. S3. Convergence graph of DMOA for Test Power System 3.

TABLE S5
OBTAINED OUTPUT POWER OF TEST SYSTEM 4 BY DMOA

Output Power

P1 ∼ P10 110.7998 110.7998 97.3999 179.7331 87.7999 139.9999 259.5996 284.5996 284.5996 130.0000

P11 ∼ P20 94.0000 94.0000 214.7597 394.2793 394.2793 394.2793 489.2793 489.2793 511.2793 511.2793

P21 ∼ P30 523.2793 523.2793 523.2793 523.2793 523.2793 523.2793 10.0000 10.0000 10.0000 87.7999

P31 ∼ P40 189.9999 189.9999 189.9999 164.7998 194.3976 199.9999 109.9999 109.9999 109.9999 511.2793

Total power (MW) 10500.0000 Total Cost ($/h) 121412.5443
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Fig. S4. Convergence graph of DMOA for Test Power System 4.

TABLE S6
OBTAINED OUTPUT POWER OF TEST SYSTEM 5 BY DMOA

Output Power

P1 ∼ P10 115.0454 188.9999 189.9998 189.9999 168.5398 189.9999 489.9999 489.9999 495.9999 495.9999

P11 ∼ P20 495.9999 495.9999 505.9999 508.9999 505.9999 504.9999 505.9999 505.9999 504.9999 504.9999

P21 ∼ P30 504.9999 504.9999 504.9999 504.9999 536.9999 536.9999 548.9999 548.9999 500.9999 500.9999

P31 ∼ P40 505.9999 505.9999 505.9999 505.9999 499.9999 499.9999 240.9999 240.9999 773.9999 768.9999

P41 ∼ P50 3.0000 3.0000 249.5848 246.9283 249.9999 249.9993 241.4809 249.9998 249.9991 249.9992

P51 ∼ P60 165.0005 165.0000 165.0001 165.0001 180.0000 180.0000 103.0001 198.0000 311.9999 281.3076

P61 ∼ P70 163.0000 95.0000 160.0004 160.0006 489.9987 196.0013 489.9988 489.9963 130.0000 234.7197

P71 ∼ P80 137.0002 325.4955 195.0003 175.0007 175.0000 175.0006 175.0001 330.0002 530.9999 530.9999

P81 ∼ P90 396.8984 56.0000 115.0000 115.0000 115.0000 207.0000 207.0000 175.0003 175.0002 175.0003

P91 ∼ P100 175.0000 579.9999 644.9999 983.9999 977.9999 681.9999 719.9999 717.9999 719.9999 963.9999

P101 ∼ P110 957.9999 1006.9999 1005.9999 1012.9999 1019.9999 953.9999 951.9999 1005.9999 1012.9999 1020.9999

P111 ∼ P120 1014.9999 94.0000 94.0000 94.0000 244.0000 244.0001 244.0001 95.0001 95.0001 116.0000

P121 ∼ P130 175.0000 2.0000 4.0000 15.0000 9.0000 12.0000 10.0000 112.0000 4.0000 5.0000

P131 ∼ P140 5.0000 50.0000 5.0000 42.0000 42.0000 41.0000 17.0000 7.0000 7.0000 26.0002

Total power (MW) 49342.0000 Total Cost ($/h) 1559708.4550
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Fig. S5. Convergence graph of DMOA for Test Power System 5.

TABLE S7
THE OBTAINED BEST RESULT OF TEST SYSTEM 6 BY DMOA

P1 P2 P5 P8 P11 P13 V1 V2 V5 V8 V11 V13 t11 t12 t15 t36

175.86 48.09 20.48 21.40 11.16 12.04 1.06 1.043 1.01 1.01 1.08 1.07 0.978 0.969 0.932 0.968

Total Cost ($/h) 793.836 Total power (MW) 289.066 Total losses (MW) 5.666

TABLE S8
THE OBTAINED BEST RESULT OF TEST SYSTEM 7 BY DMOA

P1 P2 P5 P8 P11 P13 V1 V2 V5 V8 V11 V13 t11 t12 t15 t36

139.65 54.90 23.82 33.41 18.07 17.50 1.06 1.043 1.01 1.01 1.08 1.07 0.978 0.969 0.932 0.968

Total Cost ($/h) 643.599 Total power (MW) 287.371 Total losses (MW) 3.971
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Fig. S6. Convergence graph of DMOA for Test Power System 6.
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Fig. S7. Convergence graph of DMOA for Test Power System 7.

TABLE S9
TEST VALUES OBTAINED BY DMOA AND DMOA1 FOR FIVE TEST POWER SYSTEMS

Algorithm DMOA DMOA1

Case Minimum Cost ($/h) Average Cost ($/h) Standard Deviation Minimum Cost ($/h) Average Cost ($/h) Standard Deviation

1 15444.7455 15444.7455 5.78E-11 15444.7455 15444.9547 4.79E-01

2 32692.3456 32692.3456 6.21E-12 32692.3456 32692.3456 4.42E-12

3 623.8265 623.8326 1.26E-02 623.8265 623.8348 3.82E-02

4 121412.5443 121420.8076 9.01E+00 121412.5443 121522.1495 7.75E+01

5 1559708.4550 1559720.9179 2.82E+01 1559708.4550 1559944.3592 6.91E+02

TABLE S10
TEST VALUES OBTAINED BY DMOA AND DMOA2 FOR FIVE TEST POWER SYSTEMS

Algorithm DMOA DMOA2

Case Minimum Cost ($/h) Average Cost ($/h) Standard Deviation Minimum Cost ($/h) Average Cost ($/h) Standard Deviation

1 15444.7455 15444.7455 5.78E-11 15462.0410 15511.7471* 3.55E+01

2 32692.3456 32692.3456 6.21E-12 32889.6254 33121.9125* 1.16E+02

3 623.8265 623.8326 1.26E-02 674.0701 750.1978* 5.32E+01

4 121412.5443 121420.8076 9.01E+00 128065.4524 138713.8336* 6.41E+03

5 1559708.4550 1559720.9179 2.82E+01 1733421.0779 1820298.8586* 4.49E+04

Results with * means that there are infeasible solutions over 25 independent runs.
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