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Surrogate-Assisted Evolutionary Algorithm for
Expensive Optimization with Equality and

Inequality Constraints

Abstract—The presence of equality and inequality constraints
is of significant importance in expensive constrained optimization.
This study aims to develop a surrogate-assisted evolutionary
algorithm capable of addressing three types of constraints com-
monly encountered in expensive optimization problems: 1) those
with only inequality constraints, 2) those with only equality
constraints, and 3) those with both equality and inequality
constraints. To achieve this, a radial basis function neural
network is employed as a surrogate model to approximate
expensive objective functions and individual constraints. Lever-
aging a consensus measure among all individual constraints, an
improved infill sampling criterion is proposed to identify the most
promising candidates. In addition, a hybrid local search strategy
refines infeasible yet promising solutions via both surrogate-
driven evolution and a model-free gradient-based mutation. To
balance these search modes cost-effectively, a stagnation strategy
enables adaptive switching between exploration and exploitation.
Experimental results on 58 test instances demonstrate the efficacy
of the proposed approach across all three constraint types
under a strict budget of 1000 expensive function evaluations.
These findings validate the methodology and show competitive
performance relative to state-of-the-art methods.

Index Terms—Expensive constrained optimization, differential
evolution, gradient-based mutation, surrogate model.

I. INTRODUCTION

EXPENSIVE constrained optimization problems (ECOPs)
are characterized by constraints and a limited computa-

tional budget for function evaluations (FEs). A single-objective
ECOP, incorporating both inequality and equality constraints,
can be formulated as follows:

minimize f(x), x = (x1, . . . , xn),
subject to gi(x) ≤ 0, i = 1, . . . , cg,

hi(x) = 0, i = 1, . . . , ch,
Li ≤ xi ≤ Ui, i = 1, . . . , n,

(1)

where x denotes the decision vector; f(x), g(x), and h(x)
represent the objective function, inequality constraints, and
equality constraints, respectively; Li and Ui are the lower and
upper bounds of the ith variable xi; and n, cg , and ch indicate
the numbers of variables, inequality constraints, and equality
constraints, respectively.

A decision vector x is deemed feasible if it satisfies all
constraints, thereby yielding an overall constraint violation of
zero; otherwise, x is infeasible. The overall constraint violation
CV (x) is calculated as:

CV (x) =

cg∑
i=1

max{gi(x), 0}+
ch∑
i=1

max{|hi(x)| − ϵ, 0}, (2)

where ϵ = 0.0001 denotes the tolerance margin for equality
constraints [1], ensuring a negligible but finite threshold for

constraint satisfaction. Accordingly, the decision space is
partitioned into feasible and infeasible regions. The feasible
region specifically encompasses all solutions that meet the
constraints.

Within the scope of expensive optimization [2]–[4], the
number of FEs is restricted due to the high cost associated with
physical experiments and/or computationally intensive simu-
lations. Surrogate-assisted evolutionary algorithms (SAEAs)
have emerged as a prominent approach for addressing ECOPs.
The basic idea is to build a series of surrogate models to
approximate the original expensive objective functions during
the evolutionary process [5]. Since the surrogate models are
computationally cheaper than the original evaluations for can-
didate solutions, the cost of evaluations can be significantly
reduced. Analogous to model-free evolutionary algorithms
(EAs) [1], [6], [7], these surrogate models substitute expen-
sive FEs for evaluating individuals, thereby estimating the
most promising candidates through infill sampling criteria to
enhance optimization efficiency. Common surrogate models
include Gaussian Process (GP) [8], radial basis function net-
works (RBFNs) [9], [10], support vector machines (SVMs)
[11], and gradient boosting classifiers (GBC) [12].

To seek a globally feasible solution within a limited num-
ber of expensive FEs, it is imperative that surrogate mod-
els effectively guide population evolution. Correspondingly,
surrogate model management and utilization in SAEAs are
key to addressing the aforementioned issue, which concerns
surrogate-driven evolution [13], infill sampling criteria [14],
and local search [15]. Surrogate-based evolution, along with
its management, is designed to ensure correct evolutionary
directions by evaluating individuals through approximate mod-
els. Properly managed surrogate-driven evolution enhances
convergence accuracy while minimizing computational costs
[16]. Following surrogate-driven evolution, a set of candidate
individuals is generated. Infill sampling criteria are then ap-
plied to pre-screen potential candidate solutions for subsequent
expensive evaluations. The criteria usually consider the quality
of solutions and their associated uncertainty. For instance, a
pre-screened candidate solution that exhibits the lowest overall
constraint violation CV (x), when compared to all currently
evaluated solutions, is deemed of high quality according to
the feasibility rule [17]. Similarly, a pre-screened candidate
solution characterized by low prediction confidence represents
a potential candidate according to the uncertainty-based rule
[18], [19]. Employing expensive FEs for these high-quality
solutions with uncertainty can significantly enhance global
search capabilities in expensive constrained optimization. Sim-
ilarly, surrogate-based local search [20] refines given candi-
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date solutions using the surrogate outputs, selecting the most
promising variant for further expensive evaluation.

Due to the presence of constraints, feasible solutions are
preferred over infeasible ones. Thus, handling constraints is
pivotal in SAEAs. As alternative FEs, it is imperative that
constraints are considered within the surrogate model itself.
Commonly, approximations can suffer from overfitting or
underfitting, significantly reducing the accuracy of surrogate
models for constraints and potentially misleading the evolution
in handling them. When multiple constraints are involved,
the feasible region becomes exceedingly narrow, making it
difficult to extract information for feasible solutions from the
training data [19]. Unlike approximations for a single objective
function, the goal here is to build efficient training models
that account for all constraints, presenting a more challenging
problem. To mitigate the difficulties posed by constraints,
special surrogate model-building and data selection strategies
have been developed [21]. For example, to explore different
regions of interest for objectives and constraints, Liu et al. [22]
and Rahi et al. [23] constructed a series of surrogate models
for the objective function and each constraint. In [19], [24],
data representing the overall constraint violation has been used
to develop an alternative surrogate model for all constraints
together, simplifying the constraint approximation. To balance
uncertainty and accuracy, Wang et al. [20] developed an
effective combination strategy utilizing both cheap and expen-
sive surrogates. At each generation, all expensively evaluated
decision vectors are used to construct a cheap surrogate.
Meanwhile, for each expensive surrogate, K nearest neighbors
to the targeted decision vector are selected as training data.

During the evolutionary process, surrogate models need
to be updated by adding new candidate solutions (samples)
selected according to the infill sampling criterion. As a model
management strategy, various infill sampling criteria have been
proposed for ECOPs. Yang et al. [25] proposed generating a
set of offspring via the multiple offspring generators and select
the most promising individual based on improved feasibility
rules, which consider not only the overall constraint violation
but also the number of constraint violations. Therefore, the se-
lected sample can significantly reduce misjudgment regarding
the superiority of infeasible solutions due to the inconsistency
of the magnitudes for different constraints. In [10], candidate
solutions are pre-screened based on potential and uncertainty.
The distances between the predicted optimal solution and all
expensively evaluated individuals are calculated to automati-
cally decide whether to choose the potentially best solution or
the one with high uncertainty for expensive evaluation. In this
way, candidate solutions that are similar to the current best
solution can be avoided. Wei et al. [19] developed a feasible
exploration strategy to pre-screen candidate solutions, which
is efficient for problems with complicated feasible areas. The
feasible exploration uses DE/current-to-feasible/1 as the search
optimizer to generate trial samples. After few generations, the
feasibility rule combined with the penalty-based technique is
used to select the predicted best candidate.

To date, most research on SAEAs has focused on evolution-
ary strategies for ECOPs with inequality constraints, whereas
comparatively few studies have addressed surrogate-model

management, infill sampling criteria, and surrogate-driven evo-
lution tailored to ECOPs with equality constraints. According
to (1), ECOPs can be categorized into three types: 1) those
with only inequality constraints, 2) those with only equality
constraints, and 3) those with both equality and inequality con-
straints. For the latter two types, equality constraints typically
confine the feasible set to a thin manifold and confine tight
feasibility tolerances (e.g., precision of at least 0.0001), sub-
stantially increasing search difficulty. Consequently, SAEAs
that perform well on inequality-only ECOPs often degrade
when equality constraints are present. Given the prevalence
of equality-constrained ECOPs in practice, there is a clear
need to close this gap under limited budgets of expensive FEs.
Moreover, strategies for surrogate-model management, infill
sampling, and model-free local optimization–though effective
and successful on inequality-only ECOPs—may not be suit-
able for the latter two ECOP types considered here. Motivated
by these observations, this study develops tailored mecha-
nisms for surrogate model management, a consensus-aware
infill sampling criterion, and a cost-effective reuse strategy
for gradient-based mutation as local search to solve ECOPs
spanning all three constraint types. Our main contributions
are as follows:

• We introduce a stagnation strategy that coordinates
global and local surrogate-driven evolution with a model-
free optimizer. Surrogate-driven evolution provides cost-
effective exploration of feasibility with few expensive
FEs, whereas the model-free local optimizer offers accu-
rate exploitation near tight equality manifolds. The stag-
nation trigger enables a controlled, cost-aware handoff
between these modes.

• We propose an infill criterion that first seeks consensus
among individual constraint improvements before consid-
ering candidates based on objective value. Coupled with
the stagnation policy, this criterion improves surrogate
utilization and reduces unnecessary invocations of the
model-free local optimizer.

• Building on classical gradient-based mutation [30], we
design a reuse strategy for gradient-based local search,
namely gradient-reused mutation (GRM), targeted at
difficult constraints. Gradient information that has suc-
cessfully improved an infeasible solution is reapplied
until no further progress is observed, enabling substantial
feasibility gains under tight FE budgets.

• Two test suites covering all three ECOP types are used
to assess the method under highly restricted FE budgets.
Against six state-of-the-art SAEAs, the proposed ap-
proach delivers substantial improvements across diverse
constraint configurations, indicating a promising direction
for tackling more complex, computationally demanding
ECOPs.

The remainder of this paper is organized as follows. Section II
provides a brief overview of the preliminaries. The proposed
SAEA is thoroughly discussed in Section III. Section IV
presents empirical experiments of the proposed algorithm,
providing a detailed analysis. Finally, Section V concludes the
paper and outlines future work.
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II. PRELIMINARIES

In this section, we briefly introduce the RBFN surrogate
model, DE, and gradient-based mutation.

A. Feasibility Rule

For constrained optimization, whether it is expensive or
not, the focus is primarily on feasible solutions, as infeasi-
ble solutions inherently lack optimality. Therefore, handling
constraints is a critical aspect of constrained optimization
within EAs. Among various constraint handling techniques,
the feasibility rule [17] is the most popular. It not only
demonstrates powerful capabilities but also operates without
parameter control. Specifically, three criteria are used to com-
pare two candidate solutions, as follows:

1) Any feasible candidate solution is preferred over any
infeasible one.

2) If both two candidate solutions are infeasible, the one
with a smaller overall constraint violation is preferable.

3) If both two candidate solutions are feasible, the one with
a better objective function value is preferable.

The first two criteria drive the evolutionary population toward
feasible regions, while the third assists in exploiting high-
quality feasible solutions. Previous studies show that the feasi-
bility rule can handle constraints at a significantly fast speed.
However, since the first two criteria employ a greedy strategy,
there is a risk of becoming stuck in local optima. To mitigate
this issue, Wang et al. [31] propose an efficient replacement
mechanism to replace a certain number of infeasible solutions
that have worse objective function values, despite having
smaller overall constraint violations.

On one hand, the feasibility rule can quickly guide the
evolution toward the feasible region. This is particularly
important in expensive constrained optimization, especially
when equality constraints are involved, as the feasible region
becomes significantly narrow, and fast convergence is desirable
due to the limited computational budget. On the other hand,
the approximation of constraints by surrogates can inevitably
cause distortion or loss of quality. The challenge of employing
the feasibility rule in a robust manner to avoid performance
degradation while handling ECOPs with all types of con-
straints remains an area requiring further investigation.

B. Radial Basis Function Network

The RBFN was first formulated by Broomhead and Lowe
[32] in 1988. In this model, radial basis functions serve as
activation functions, and the output is a linear combination of
such functions applied to the inputs and neuron parameters.
In this study, the RBFN with a cubic form is adopted as a
surrogate, and the approximation output y can be expressed
as follows:

y = wTφ =

N∑
i=1

ωiϕ(||x− xi||3) (3)

where, N is the cardinality of the training set, w is an N ×
1 weight vector including ωi, i = 1, 2, . . . , N , φ is another
N × 1 vector containing the values calculated by the basis

function of cubic form ϕ(·), and the norm || · || is taken to be
the Euclidean distance. The cubic form is commonly used for
ϕ(·) in RBFNs and their variants [10], [20], [25] due to its
effectiveness and simplicity, and this study adopts this form
as well. The unknown w can be calculated as follows:

w = (ΦTΦ)−1ΦTF (4)

where F = (f(x1), (x2), . . . , (xN ))T and Φ is the Gram
matrix defined as

Φ =

 ϕ(x1 − x1) · · · ϕ(x1 − xN )
...

. . .
...

ϕ(xN − x1) · · · ϕ(xN − xN )

 (5)

Due to its strong performance, the RBFN has become a
popular choice for approximating black-box functions. Fur-
thermore, its characteristic of parameter insensitivity during
neural network training has made it especially attractive to
researchers and users. In the field of expensive optimization,
the RBFN has been one of the most widely used surrogates
for approximating objective functions and constraints. For
example, Regis [33] utilized all collected data to train RBFN
surrogates for direct approximation of both objective functions
and constraints. In contrast, Li and Zhang [34] adopted multi-
ple local RBFN surrogates to approximate a single constraint.

C. Differential Evolution

As the search engine, differential evolution (DE) [35] and its
variants employ mutation and crossover operators to generate
the trial vectors of offspring.

Suppose that the population P consists of NP decision
vectors of individuals, defined as P = {xi, . . . ,xNP }. First,
the mutation operator produces the mutant vector vi for the
targeted individual xi, where i ∈ [1, NP ]. In this study, five
of the most popular mutation operators used in constrained
optimization [10], [25], [36] are adopted:

1) DE/best/2

vi = xbest + Fsc(xr1 − xr2) + Fsc(xr3 − xr4), (6)

2) DE/rand/2

vi = xr1 + Fsc(xr2 − xr3) + Fsc(xr4 − xr5), (7)

3) DE/rand-to-best/1

vi = xr1 + Fsc(xbest − xr1) + Fsc(xr2 − xr3), (8)

4) DE/current-to-best/1

vi = xi + Fsc(xbest − xi) + Fsc(xr1 − xr2), (9)

5) DE/current-to-rand/1

vi = xi + Fsc(xr1 − xi) + Fsc(xr2 − xr3), (10)

where r1, r2, r3, r4 and r5 are distinct integers randomly
selected from the range {1, . . . , i − 1, i + 1, . . . , NP}, xbest

is the decision vector of the best individual found so far, and
Fsc is the scaling factor.
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After mutation, the crossover operator is applied to produce
the trial vector ui based on vi and xi. The commonly used
binomial crossover is defined as follows:

ui,j =

{
vi,j , if randj ≤ CR or j = jrand,
xi,j , otherwise. j = 1, . . . , n,

(11)
where jrand is an integer from {1, ..., n}, randj is a decimal
from [0, 1], and CR is the crossover rate.

D. Gradient-based Mutation

Gradient descent is a premier technique for numerical
optimization. It locates the optimum by iteratively moving
against the gradient of the targeted objective function at a
given point. Recently, gradient descent has been developed as
a repair method or local search [22] for model-free constrained
optimization to rapidly seek the feasible region. The basic idea
is derived from the first-order Taylor expansion:

C(x′) ≈ C(x) +∇xG(x′ − x), (12)

where C(x) is the vector for all equality and inequality
constraint violations. ∇xG is the Jacobian matrix for C(x),
and x and x′ are the initial and refined decision vectors,
respectively.

The term ∇xG indicates the direction of the fastest in-
crease of the constraints. Conversely, its opposite, −∇xG,
points to the steepest descent direction along the constraints.
After gradient-based mutation, violations are expected to be
repaired. To this end, the refined decision vector x′ is fine-
tuned to be feasible as follows: gi(x

′) ≤ 0, i = 1, . . . , cg,

hi(x
′) = 0, i = 1, . . . , ch.

(13)

According to (1) and (2), the constraint violation is always
considered to be positive, and in this case, C(x) is effectively
a zero matrix. Therefore, under these conditions, (12) can be
simplified

x′ = −∇−1
x GC(x) + x (14)

Note that if ∇xG is not invertible, the Moore-Penrose inverse
or pseudo-inverse is employed to compute ∇−1

x G.
The gradient-based mutation and its variants have been

successfully applied to model-free constrained optimization,
achieving outstanding performance in many benchmark com-
petitions and real-world applications. Despite their efficacy,
there are two key considerations when applying gradient-based
mutation. First, gradient-based mutation is only conducted
on infeasible solutions with constraint violations greater than
zero; for the constraints that have been satisfied, their gradients
are not utilized in (14). This approach ensures that the ele-
ments of ∇xG are not zero, thus largely avoiding the vanishing
gradient problem. Second, due to the black-box nature of the
optimization process, n FEs are often required to numerically
calculate the gradient matrix by finite difference method;
therefore, an additional scheduling scheme is necessary to
avoid wasting FEs.

Feasible region for

inequality constraints

Feasible region for

equality constraints

Decision space

Fig. 1. A simple illustration of the increased difficulty in handling equality
constraints. The large red region representing the feasible region for inequality
constraints is significantly reduced to the narrow blue curve when these
constraints are transformed into equality constraints.

III. PROPOSED APPROACH

In this section, we first elaborate on the motivation for this
study and then detail the proposed SAEA for ECOPs with
different types of constraints.

A. Motivations

Many real-world optimization problems are constrained not
only by inequalities but also by equalities. Furthermore, their
FEs often depend on costly physical experiments or time-
consuming simulations. To date, state-of-the-art SAEAs for
expensive constrained optimization have been successfully
developed to handle the first type of constraints, specifically
ECOPs with inequalities. However, addressing ECOPs with
the other two types of constraints is also crucial. Given specific
application scenarios, the consideration of equalities in expen-
sive constrained optimization remains necessary. Therefore,
this study focuses on developing an SAEA to meet this need.

The search process for ECOPs with equality constraints
significantly differs from that for inequalities, presenting ad-
ditional challenges for expensive constrained optimization. To
illustrate this difficulty, we utilize test function G03 from the
CEC2006 benchmark set [37]:

minimize f(x) = −(
√
n)n

n∏
i=1

xi,

subject to h1(x) =
n∑

i=1

x2
i − 1 = 0,

(15)

where n = 10 and 0 ≤ xi ≤ 1, i = 1, . . . , 10. For comparison,
we reformulate the above equality constraint into an inequality
constraint:

minimize f(x) = −(
√
n)n

n∏
i=1

xi,

subject to g1(x) =
n∑

i=1

x2
i − 1 ≤ 0.

(16)

The decision space and feasible regions for (15) and (16)
are depicted with the first two variable x1 and x2 in Fig. 1.
Although we maintain the decision space and the mathematical
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expressions for the objective function and constraints, chang-
ing only the inequality sign “≤” to the equality sign “=”,
the feasible region of the equality constraint is substantially
narrower than that of the inequality constraint, as evidenced by
the red area and the narrow blue curve. Moreover, compared to
the entire decision space, the slim feasible region of inequali-
ties poses a greater challenge for identification within a large
decision space via surrogate-driven evolution. Based on these
observations, locating the feasible solution with the minimum
objective function value becomes difficult. Therefore, when
considering all three types of constraints in the design of
SAEAs, there is a need to further develop existing model
management, surrogate utilization, and infill sampling criteria
to address ECOPs with equalities.

Inspired by the aforementioned motivations, we propose a
surrogate-assisted DE with stagnation activated GRM (SaDE-
SA-GRM) to solve ECOPs with all three types of constraints.
The schematic diagram of SaDE-SA-GRM is illustrated in
Fig. 2. In this approach, all collected data are used to construct
global RBFN surrogate models for approximating the objective
function as well as equality and/or inequality constraints. Once
the surrogate model is adequately trained, it is employed to
guide the population over a specified number of generations.
Consistent with most SAEAs, the primary goal of the proposed
global RBFN surrogate-driven evolution is to initially explore
the feasible region and subsequently identify the promising
solution via our developed consensus-aware infill sampling
criterion. As previously noted, equality constraints typically
result in extremely narrow feasible regions that are challenging
to explore effectively. To address this issue, we integrate the
local RBFN surrogate-driven evolution with the model-free
gradient-based optimizer, i.e., GRM, to improve exploitation
capabilities. To overcome the high expensive FE cost typically
associated with numerical gradient computation [30], two
specialized strategies for surrogate model management are
introduced. The first strategy activates GRM upon detecting
stagnation in surrogate-driven evolution, thereby enhancing
exploration efficiency. The second strategy employs a reuse
strategy, allowing the model-free optimization method to be
repeatedly applied in a cost-effective manner, further reducing
computational overhead.

In the following subsections, we provide a detailed discus-
sion of RBFN surrogate-driven evolution, the developed infill
sampling criteria, GRM, and their implementation manage-
ment, including the proposed stagnation strategy.

B. RBFN Surrogate-Driven Evolution

When considering equality constraints, the fitness land-
scape becomes more complex, necessitating a highly accurate
and generalizable approach for approximation. Therefore, the
RBFN, known for its high approximation accuracy and ex-
cellent generalization ability [33], is chosen as a surrogate in
our proposed method. On the other hand, population-based
EAs progress incrementally, with significant improvements
accumulating over generations. For expensive unconstrained
optimization, generation-based evolution control ensures the
correct convergence of SAEAs [16]. However, due to the

presence of feasible regions, the convergence of SAEAs for
expensive constrained optimization is more complex. Two
different types of convergence are asynchronously required
for ECOPs: correct convergence toward a feasible region
within the decision space and fast convergence toward the
best feasible solution within the feasible region. To achieve
this, we build global and local surrogate models to drive the
generation-based global and local evolution. As the procedures
for building global and local surrogates are the same, with the
only difference being the input information, we first outline
a general framework in Algorithm 1, implementation details
are given sequentially.

Algorithm 1: Surrogate-Driven Evolution
Input:

• TS: the training set to build a surrogate model;
• P : the set of NP individuals for surrogate-driven

evolution;

Use TS to train the RBFN for the objective function
and constraints;

while Tm generations are not achieved do
for x in P do

Generate an offspring u using a certain DE
operator;

Evaluate the offspring u by the well-trained
RBFN;

Update x by u according to the feasibility rule.
Output:

The individuals in P .

For global surrogates, the archive containing all expensively
evaluated solutions is used as the training set TS to train the
RBFN. The current population, consisting of NP individuals,
serves as the initial population for the global surrogate-driven
evolution. The search space is defined as the problem decision
space, Li ≤ xi ≤ Ui, i = 1, . . . , n. For local surrogates, the
best NP individuals are selected from the archive to form the
TS and P , defining their occupied space—the range between
the maximum and minimum values of each decision variable—
as the search space. Subsequently, the for loop operates anal-
ogously to most model-free EAs. The outputs of well-trained
surrogates substitute expensive FEs to drive the population-
based evolution within Tm generations. Specifically, for each
offspring u, a DE operator is randomly selected from the
five mutation operators introduced in Subsection II-C, while
Fsc and CR are generated as 0.5rand + 0.5 as referenced
in [25], [38]. The values of the objective function, constraint
violations, and overall constraint violation are predicted by
the surrogate. To update x by u, the standard feasibility rule
introduced in Section II-A is applied. After the while loop, the
evolved population P is output for further infill sampling.

C. Developed Infill Sampling Criterion

By global RBFN surrogate-driven evolution, NP individu-
als are obtained. The selection of the most promising candidate
solution for updates is crucial for rapidly exploring the feasible
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Fig. 2. The schematic diagram of SaDE-SA-GRM.

region. Additionally, SAEAs for ECOPs typically perform
fewer FEs, limiting the ability to adjust the evolutionary
direction by the trial-and-error method. Therefore, the infill
sampling criterion plays a vital role in preventing premature
convergence, especially within the narrow feasible region
caused by equality constraints.

So far, numerous studies [28], [29], [31], [39] have con-
firmed that the objective function can mitigate the search bias
introduced by constraint handling. As highlighted in [28],
the correlation between objective function optimization and
constraint satisfaction has been shown to direct evolutionary
search toward different promising regions. Moreover, due to
limited opportunities for trial and error, a consensus between
improvements in all constraints can significantly reduce the
bias caused by substantial improvements in one or two specific
constraints. Inspired by these insights, we have developed a
new infill sampling criterion to identify potentially good can-
didate solutions. As detailed in Algorithm 2, when comparing
the ith pairwise individuals qi and pi, if qi is no worse than
pi across all individual constraints, qi is stored in S. If such
a consensus is not achieved by any pairwise comparison, and
thus S remains empty, the overall constraint violation CV (x)
is used to compare qi and pi in the subsequent for loop. After
employing these two comparative strategies, if S is not empty,
the individual with the minimum objective function value in
S is selected for further expensive evaluation; otherwise, a
stagnant flag is then output.

D. GRM

Recent research [22], [40] has demonstrated the over-
whelming effectiveness of gradient-based mutation in han-
dling constraints. This approach repairs infeasible solutions
by gradient information, enabling rapid movement towards the
feasible region. Whether the optimization is expensive or not,
constraints share similar characteristics; thus, gradient-based
mutation is also capable of managing constraints in ECOPs.
However, a notable drawback of gradient-based mutation is
its high computational cost, as it requires n FEs to obtain
the gradient matrix, which is particularly burdensome in
expensive optimization scenarios. Nonetheless, as indicated

Algorithm 2: Developed Infill Sampling Criterion
Input:

• the original population: P = {p1, . . . ,pNP };
• the newly evolved population: Q = {q1, . . . ,qNP };
• the associated parameters: cg and ch;

Set S = {};
for i = 1 to NP do

if gj(qi) ≤ gj(pi), j = 1, . . . , cg and
ht(qi) ≤ ht(pi), t = 1, . . . , ch then
S = S ∪ {qi};

if S is empty then
for i = 1 to NP do

if CV (qi) ≤ CV (pi) then S = S ∪ {qi};
if S is not empty then

Perform an expensive evaluation of the individual
with the minimum objective value in S (denoted
q);

Identify the individual in P with the maximum
overall constraint violation (denoted p);

if q is preferred to p according to the feasibility
rule then

Replace p with q and output P ;
else Output stagnation;

else Output stagnation;

in [13], model-free local searches can enhance the poten-
tial of surrogate models and mitigate their adverse effects.
Therefore, it is worthwhile to explore how to economically
employ gradient-based mutation to achieve fast convergence
in SAEAs. To address this issue, we propose two strategies:
one restricts the implementation of gradient-based mutation to
a significantly low level through the stagnation of evolution,
and the other maximizes convergence speed through a reuse
strategy. Since stagnation is applied globally in SaDE-SA-
GRM, its implementation is detailed in the subsection on the
overall approach. This subsection describes the GRM.

As outlined in Section III-B, SaDE-SA-GRM encompasses
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both global and local surrogate-driven evolution. If neither
search strategy finds any improvement under certain condi-
tions, the evolution is considered stagnant, and then gradient-
based mutation is activated as an alternative search strategy
to repair infeasible solutions. The adaptive approach to GRM
is presented in Algorithm 3. Given an infeasible solution
x, its gradient matrix ∇xG is numerically calculated using
n expensive FEs. Subsequently, ∇xG is repeatedly used to
update x and its successor until no further improvements are
obtained (see the if-else condition). The rationale for reusing
∇xG includes:

• It is impractical to frequently calculate the gradient matrix
due to the consumption of n expensive FEs from the total
computational budget.

• The primary objective of gradient-based mutation is to
convert violations into feasible solutions. The efficiency
of gradient-based mutation derived from Eqs. (12) to
(14) increases as the infeasible solution approaches the
feasible region, thus justifying the reuse of the gradient
matrix to maximize improvement.

• Considering the vanishing gradient problem, the closer
the solution is to the feasible region, the more likely this
issue occurs. Therefore, compared to x, x′ is more prone
to incur vanishing gradients if the gradient matrix at x′

is utilized.
An example (Appendix A in the supplementary material) is
given to mathematically describe the employment of GRM.

Algorithm 3: GRM
Input:

• the input infeasible solution: x;
• the associated parameter: nFEs;

Numerically calculate the gradient matrix at x as
∇xG;

Archive the n intermediate solutions;
Set nFEs = nFEs+ n;
while x is infeasible do

Use ∇xG, x, and C(x) to calculate x′ via (14);
Evaluate x′;
Archive x′;
Set nFEs = nFEs+ 1;
if CV (x′) ≤ CV (x) then

Set x = x′, C(x) = C(x′), and f(x) = f(x′);
else break;

Output: x;

E. Implementation with Stagnation Strategy

The overall approach is presented in Algorithm 4. SaDE-
SA-GRM is generally executed in five main steps as follows:
Step 1 Initialization: NP decision vectors are generated us-

ing Latin hypercube sampling (LHS) [41] in the decision
space. These NP decision vectors are then evaluated
using expensive FEs and collected into an archive A.
Meanwhile, their copies constitute the initial population

Algorithm 4: SaDE-SA-GRM

Initialization;
Set stagnation count stg = 0;
while nFE < MaxFEs do

Execute Algorithm 1 for global surrogate-driven
evolution;

Execute Algorithm 2 for infill sampling;
if stagnation is output then

Set stg = stg + 1;
else Set stg = 0;
if stg = snum then

Execute Algorithm 1 for local surrogate-driven
evolution;

Perform an expensive evaluation to the best
individual and observe the improvement;

if no improvement and no feasible solution
found then

Execute Algorithm 3 for GRM;
Set stg = 0;

Output: best solution;

P . It is worth noting that, throughout the evolutionary
process, each expensive evaluation is recorded and its
corresponding results are archived in A.

Step 2 Global Surrogate-Driven Evolution: RBFN models are
built using all the expensively evaluated data in A. Since
all archived information is used to train this surrogate, the
approximation to the whole fitness landscape of the objec-
tive function and all individual constraints is expected to
established. Therefore, RBFN surrogate models are used
to globally replace the original FEs to drive the population
P over Tm generations.

Step 3 Infill Sampling: Following the global RBFN surrogate-
driven evolution, the most promising candidate is selected
for expensive evaluation. The proposed infill sampling
criterion is used to (i) detect consensus among improve-
ments across all individual constraints and (ii) account
for objective optimization. If no candidate satisfy above
criterion, or if the expensively evaluated candidate fails to
replace the worst individual in the current population, the
stagnation flag is output and the stagnation counter stg is
incremented; otherwise reset stg to zero. When stagnation
persists for snum consecutive iterations, proceed to Step
4; otherwise, return to Step 2.

Step 4 Local Surrogate-Driven Evolution: RBFN models are
constructed to exploit the best solution xbs found so far.
First, xbs and its NP −1 nearest neighbors from A serve
as both the training set and the initial population for local
surrogate-driven evolution. Next, the RBFN surrogates
drive these NP individuals for Tm generations. The
original feasibility rule is then applied to select the best
candidate for expensive evaluation. If no improvement is
achieved by the local surrogate-driven evolution and no
feasible solution has yet been found, proceed to Step 5;
otherwise, reset stg to zero and return to Step 2.

Step 5 GRM: As a model-free local search, gradient-based
mutation is invoked only when no feasible solution has



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 8

been found and is applied to the best infeasible solu-
tion. Upon activation, our proposed GRM described in
Section II-D is employed to further refine this solution.
Regardless of whether an improvement is achieved, stg
is reset to zero, and the process returns to Step 2.

As mentioned in Section III-D, stagnation aims to econom-
ically employ gradient-based mutation. Here, we introduce
snum to control the frequency of using local surrogate-driven
evolution and GRM. The number of consecutive stagnation
events caused by global surrogate-driven evolution is counted
throughout the evolutionary process, as shown by stg in
Algorithm 4. For local RBFN-driven evolution, the goal is
to refine the infeasible solution using local information, rather
than to explore different promising and interesting regions.
Thus, the original feasibility rule is adopted. As a refinement
step, local RBFN-driven evolution is repeated until no further
improvements can be achieved. The variable nFEs tracks
the number of expensive FEs performed to date, including
both candidate-solution evaluations and numerical gradient
computations via the finite-difference method. The maximum
allowable FEs, denoted MaxFEs, are used as the termination
criterion for SaDE-SA-GRM.

IV. EMPIRICAL STUDY

In this section, extensive experiments are conducted to
demonstrate the capabilities of the proposed SaDE-SA-GRM.
First, we briefly introduce the experimental settings for our
empirical studies, including test instances, parameter settings,
and the running environment. Second, we investigate the sensi-
tivity of parameter settings for both surrogate-driven evolution
and stagnant evolution. Third, we examine the influences of the
developed infill sampling criterion and the GRM. Finally, we
compare the performance of SaDE-SA-GRM with five state-
of-the-art SAEAs to verify the advantages of handling ECOPs.
Additionally, the time complexity is empirically investigated
in this section.

A. Experiment Settings

1) Test Instances: Fifty-eight test instances from the two
well-known test sets, CEC2006 [37] and CEC2010 [42] are
adopted. In this study, the objective functions and constraints
of these 58 test instances are assumed to be expensive.
Thus, the MaxFEs is set to 1000 for each test instance.
Characteristics of these test instances, such as dimensions and
feasibility regions, are presented in Table S.I and Table S.II
(supplementary material). It is worth mentioning that the
feasibility region ρ is defined as the ratio between the feasible
region and the decision space; a value of 0.0000% indicates
that ρ is smaller than 0.0001%.

2) Parameter Settings: Regarding SaDE-SA-GRM, the
population size PS is set to 100. The termination parameter
Tm for surrogate-driven evolution is set to 200. The maximum
number of consecutive stagnations, denoted as snum, is set to
5. For the empirical study, 20 independent runs are conducted
on each test instance. To ensure consistent results for both
the CEC2006 and CEC2010 test instances, the averages of
the function values (AFV) and overall constraint violations

(AOCV) obtained by the corresponding approach are pre-
sented. Additionally, the success ratio (SR), which indicates
the proportion of successful runs over the total number of
runs, is calculated for comparison. The Wilcoxon signed-rank
test and the Friedman aligned test with the Hommel post-hoc
method [43] are performed at a significance level of 0.05 for
non-parametric analyses.

3) Running Environment: SaDE-SA-GRM and its variants
were implemented using Python 3.8.10. All empirical experi-
ments were executed on a workstation equipped with an AMD
Ryzen 9 5900X 12-Core Processor and 64.0 GB of memory,
running on the Windows 10 operating system.

B. Sensitivity of Parameter Settings

There are two specially designed parameters, namely Tm

and snum, in SaDE-SA-GRM. Different settings of Tm and
snum may significantly affect the evolutionary ability. Thus,
we adopt a series of values for Tm ∈ {1, 20, 50, 100, 200, 300}
and snum ∈ {1, 5, 10} to analyze the sensitivity of these two
parameters on the CEC2006 test set.

1) Sensitivity of Tm: Table S.III (supplementary material)
provides the empirical results of SR and AFV obtained by
SaDE-SA-GRM with different Tm settings on 22 test in-
stances. The best SR and AFV obtained on each test instance
are highlighted in bold. It can be observed that SaDE-SA-
GRM with Tm = 300 achieves the best overall performance
across the 22 test instances, while SaDE-SA-GRM with Tm =
1 ranks the worst. As the termination criterion for surrogate-
driven evolution, Tm determines the search depth driven by
the corresponding RBFN surrogate. Analogous to model-free
EAs, a large value of Tm results in prolonged population
evolution, allowing for deeper exploration of the surrogate.
When Tm is set to a smaller value, such as 1, 20, 50, or 100,
the explorations achieved by both global and local surrogate-
driven evolution are relatively shallow. For example, 12 out
of 22 test functions cannot be solved by SaDE-SA-GRM with
Tm = 1 in 20 consecutive independent runs. On the other
hand, although the performance of SaDE-SA-GRM may im-
prove with a value larger than 300 for Tm, the associated time
complexity becomes unacceptable for expensive optimization
(see the analysis in Subsection IV-F). Therefore, considering
optimal performance and time consumption simultaneously,
we set Tm = 200 for all test instances in this study.

2) Sensitivity of snum: Table S.IV (supplementary mate-
rial) presents the comparison results of SaDE-SA-GRM with
snum ∈ {1, 5, 10} on 22 test instances. The best result for each
test instance is highlighted in bold. It can be observed that
SaDE-SA-GRM with snum = 5 achieves the best performance
on 15 out of 22 test instances. In contrast, SaDE-SA-GRM
with snum = 1 and snum = 10 performs best on 11 and
9 test instances, respectively. The parameter snum controls
how often local surrogate-driven evolution and the proposed
GRM are invoked; conversely, it also determines how many
additional attempts are allowed to global surrogate-driven
evolution. With snum = 1, GRM is triggered immediately
in the early and middle stages whenever the global surrogate-
driven evolution fails to produce a promising candidate. In this
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case, a substantial number of expensive FEs are consumed
to employ local surrogate-driven evolution and compute the
gradient vector and Jacobian matrix for GRM. Accordingly,
frequent local-search and GRM invocations are not cost-
effective when individuals are far from the feasible region, and
moreover, the induced rapid convergence increases the risk of
premature convergence and can limit global exploration. With
snum = 10, SaDE-SA-GRM adopts a higher tolerance for re-
peating global surrogate-driven evolution, making exploration
the dominant mode for seeking feasibility. Local surrogate-
driven evolution and GRM are then deferred to later stages.
Under this setting, the algorithm may lack sufficient budget
to fully exploit the feasible region and approach the global
optimum. Based on empirical results, we set snum = 5 in
SaDE-SA-GRM to balance exploration and exploitation.

C. Influence of the Proposed Infill Sampling Criterion

The proposed infill sampling criterion selects a promising
candidate in two steps. First, pairwise comparisons are per-
formed via the two for loops in Algorithm 2. Preference is
given to achieving consensus across all individual constraints
in the first loop; if no such consensus is found, the overall
constraint violation is used in the second loop. Second, among
the remaining candidates, the one with the minimum objective
function value is selected. To assess the impact of these two
steps, we consider two variants:

1) SaDE-SA-GRM-CVOB: Omits the consensus-based pair-
wise comparison in the first loop. Instead, the overall
constraint violation is used directly in each pairwise com-
parison; subsequently, the candidate with the minimum
objective function value is selected.

2) SaDE-SA-GRM-CssCV: Retains both for loops but ap-
plies the overall constraint violation to select the promis-
ing candidate—that is, the solution with the minimum
overall constraint violation; in case of ties, the one with
the smaller objective function value is chosen.

Pseudo-code for SaDE-SA-GRM-CVOB and SaDE-SA-GRM-
CssCV is provided in Algorithm S.1 and Algorithm S.2
(supplementary material), respectively. Table S.V (supplemen-
tary material) reports the empirical SR and AFV obtained by
SaDE-SA-GRM-CVOB, SaDE-SA-GRM-CssCV, and SaDE-
SA-GRM on the CEC2006 test set, with the best results
highlighted in bold. Nonparametric analyses are also included.
Symbols “+”, “−”, and “≈” indicate that SaDE-SA-GRM-
CVOB or SaDE-SA-GRM-CssCV is significantly better than,
worse than, or statistically indistinguishable from SaDE-SA-
GRM according to the Wilcoxon rank-sum test at a signifi-
cance level of 0.05.

Compared with SaDE-SA-GRM-CVOB and SaDE-SA-
GRM-CssCV, SaDE-SA-GRM attains superior performance
on a number of test instances across all three constraint
settings. As shown in Table S.V, SaDE-SA-GRM signif-
icantly outperforms SaDE-SA-GRM-CVOB and SaDE-SA-
GRM-CssCV on 12 and 7 test instances, respectively. In
contrast, although both SaDE-SA-GRM-CVOB and SaDE-
SA-GRM-CssCV identify feasible solutions in 20 independent
runs on the CEC 2006 suite, they achieve significantly better

results than SaDE-SA-GRM on only three instances. These
findings indicate that incorporating consensus across individ-
ual constraints together with objective improvement benefits
performance in expensive constrained optimization. Specifi-
cally, enforcing consensus among all individual constraints
is more effective than relying solely on overall constraint
violation, which supports prioritizing the first for loop in the
first step for candidate pre-selection. Figs. S.1 and S.2 (sup-
plementary material) plot the convergence curves of objective
function values and overall constraint violations against evo-
lutionary generations for SaDE-SA-GRM on 12 representative
test instances from CEC2006. Each subfigure is titled with the
name of the corresponding test instance. As shown in Fig. S.1,
SaDE-SA-GRM exhibits a very fast convergence speed in han-
dling constraints during the early stages. The overall constraint
violation can be reduced to near zero within 20 generations or
less for most test instances. However, constraint satisfaction
may experience stagnation in the middle stages, as observed
in Figs. S.1(a), S.1(g), and S.1(k). In contrast, the convergence
curves for objective function optimization exhibit significant
fluctuations throughout the evolutionary process, as shown in
Figs. S.2(a), S.2(g), and S.2(k). We attribute this behavior
to the second step of the proposed infill sampling criterion,
wherein the objective function value becomes decisive once
consensus across all constraints has been established. When
constraint violations of most individuals remain low, our
developed infill sampling criterion tends to favor infeasible
solutions that are predicted to yield smaller objective function
values. Consequently, unlike the more stable curves observed
for constraint satisfaction, the best objective function value
may fluctuate significantly, jumping from a larger value to
a smaller one across generations, resulting in a fluctuating
convergence curve.

D. Influence of GRM

Gradient-based mutation has been widely shown to be
effective for constrained optimization. However, few studies
have leveraged its advantages for expensive constrained opti-
mization. To assess the contribution of the proposed GRM, we
remove it to obtain a variant, SaDE, and conduct a head-to-
head comparison on the CEC2010 test set, which comprises
more difficult and complex problems. Notably, in SaDE (which
excludes GRM), the stagnation threshold that would otherwise
invoke GRM is set to a very large value (1000), effectively
disabling the mechanism and also serving as an abnormal-
termination sentinel. Table S.VI (supplementary material) re-
ports only the 17 test instances on which SaDE-SA-GRM and
SaDE exhibit statistically significant differences in SR, AFV,
or AOCV.

Among these 17 functions, 15 include at least one equal-
ity constraint. The ablation results indicate that SaDE-SA-
GRM markedly improves the handling of equality constraints.
First, SaDE-SA-GRM attains a 100% SR on 16 of the 17
instances and a 85% SR on C0510, demonstrating consistent
feasibility in 20 independent runs. In contrast, without GRM,
SaDE fails to find feasible solutions on 9 instances; on the
remaining 8 instances, its SR values are all below 40%.
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Second, although SaDE’s AOCV values are relatively small
on many instances, transitioning from infeasible to feasible
solutions remains difficult. For example, on C1630 and C1830
the overall constraint violations are on the order of 0.001—
only one order of magnitude above the 0.0001 tolerance for
equality constraints—yet SaDE achieves SRs of 20% and
0%, respectively. After introducing GRM, these small but
consequential violations are reduced sufficiently for feasible
solutions to be located consistently across all 20 runs. Third,
as discussed in Section 1, equality constraints typically induce
extremely narrow feasible regions. Of the 17 instances in
Table S.VI, 15 contain equality constraints, on which SaDE-
SA-GRM overwhelmingly outperforms SaDE.

Taken together, these findings demonstrate that GRM plays
a significant role in enhancing constraint-handling capability
for expensive equality-constrained optimization.

E. Further Discussion: Is GRM Cost-Effective under Stagna-
tion Strategy?

GRM is proposed to address constraints that are diffi-
cult to optimize, such as equality constraints. In Subsec-
tion IV-D, GRM has been demonstrated to significantly en-
hance constraint-handling ability. However, it is well-known
that gradient-based mutation employed in model-free EAs
often requires a substantial number of FEs to numerically
calculate the gradient, which makes gradient-based mutation
impractical in expensive optimization scenarios. To analyze
the cost-effectiveness of GRM in our proposed approach, we
compute the average time (AT) of employing GRM and the
SR value for each test instance. Table S.VII (supplementary
material) presents the empirical results.

First, SaDE-SA-GRM achieves 100% SR values on most
test instances from the CEC2006 and CEC2010 test sets.
Meanwhile, the AT value remains very low for each test
instance. For example, the maximum AT value is 3.10 for
C1630, indicating that, on average, only 93 expensive FEs
are used by GRM to find a feasible solution. Considering the
overall computational budget and constraint-handling ability,
GRM consumes less than 10% of the expensive FEs while
achieving a substantial improvement. Second, the AT values
are zero for 29 out of 58 instances, indicating that GRM has
not been activated during the evolutionary process. As we in-
troduce stagnation in evolution, GRM is conditionally applied.
Thus, if the global and local surrogate-driven evolution can
handle the constraints effectively, the implementation of GRM
is unnecessary.

Considering the investigation, it is evident that GRM im-
proves constraint-handling ability, particularly for equality
constraints. We believe that GRM is a cost-efficient method
in our proposed approach for solving expensive constrained
optimization problems.

F. Comparisons with Other SAEAs

The performance of SaDE-SA-GRM is compared with six
state-of-the-art SAEAs: GLoSADE [20], DSI-C2oDE [10],
MPMLS [34], SA-TSDE [22], SParEA [23], and eToSA-DE

[19]. Notably, GLoSADE, DSI-C2oDE, MPMLS, and SA-
TSDE were originally developed for ECOPs with only in-
equality constraints, making them less suitable for the present
evaluation involving equality constraints. Adapting algorithms
designed exclusively for inequality-constrained ECOPs to han-
dle equality constraints may yield biased comparisons. More-
over, few algorithms in the literature are explicitly designed
to address equality constraints. Consequently, these four algo-
rithms are primarily analyzed based on their performance on
test instances containing only inequality constraints.

The parameter settings of the compared algorithms follow
those recommended in their original publications, except that
MaxFEs is uniformly set to 1000 for all algorithms on each
test instance. The SR and AFV metrics achieved by the algo-
rithms on the CEC2010 test suite are summarized in Table I.
Additionally, the Wilcoxon rank-sum test at a significance
level of 0.05 is conducted to statistically compare SaDE-SA-
GRM with the other algorithms. Symbols “+”, “−”, and “≈”
indicate that the compared algorithm performs significantly
better, worse, or equivalently to SaDE-SA-GRM, respectively.
For constrained optimization, feasible solutions are inherently
preferred over infeasible ones, even when infeasible solutions
yield lower objective function values. Thus, the SR metric is
prioritized when comparing two algorithms, followed by the
AFV metric.

As seen from Table I, SaDE-SA-GRM achieves a 100%
SR on 29 test instances, comprising all 12 instances involving
only inequality constraints, 9 out of 14 instances with only
equality constraints, and 8 out of 10 instances containing both
equality and inequality constraints. For comparison, SParEA
and eToSA-DE achieve 100% SR on 6 and 25 test instances,
respectively. Among algorithms originally designed exclu-
sively for inequality-constrained ECOPs, GLoSADE, DSI-
C2oDE, MPMLS, and SA-TSDE reach a 100% SR on 9, 10,
10, and 12 test instances, respectively. Excluding six extremely
challenging test instances, where no algorithm successfully
identifies feasible solutions, SaDE-SA-GRM fails on only
one test instance across 20 independent runs, while eToSA-
DE fails on 5 test instances. Furthermore, according to the
Friedman test, SaDE-SA-GRM demonstrates the best overall
performance by achieving the lowest rank score, followed by
eToSA-DE. The statistical analysis, supported by the corre-
sponding p-values, indicates that SaDE-SA-GRM significantly
outperforms GLoSADE, DSI-C2oDE, MPMLS, SA-TSDE,
and SParEA, and exhibits competitive performance compared
to eToSA-DE.

As previously discussed, ECOPs can be categorized into
three types based on their constraint structures: only inequality
constraints, only equality constraints, and combined equality
and inequality constraints. For test instances involving only
inequality constraints, SaDE-SA-GRM significantly outper-
forms SParEA, GLoSADE, DSI-C2oDE, MPMLS, and SA-
TSDE on 11, 10, 7, 7, and 7 test instances, respectively.
Conversely, SaDE-SA-GRM performs significantly worse than
these algorithms on 1, 2, 5, 5, and 5 test instances, respectively.
When compared to eToSA-DE, which is specifically designed
to handle all three constraint types, SaDE-SA-GRM achieves
superior performance on 17 test instances, whereas eToSA-DE
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TABLE I
EMPIRICAL RESULTS OF THE SIX COMPARED ALGORITHMS AND SADE-SA-GRM

Inst.
GLoSADE DSI-C2oDE MPMLS SA-TSDE SParEA eToSA-DE SaDE-SA-GRM

SR AFV SR AFV SR AFV SR AFV SR AFV SR AFV SR AFV
C0110 1.00 -4.0761E-01 − 1.00 -4.3431E-01 − 1.00 -4.7216E-01 − 1.00 -5.4005E-01 + 1.00 -3.02E-01 − 1.00 -5.6863E-01 + 1.00 -5.0075E-01
C0210 0.05 1.9103E+00 − 0.15 1.0167E+00 − 0.90 5.3761E-01 − 1.00 2.0256E+00 − 0.00 N.A. − 1.00 -2.3178E+00 + 1.00 -1.7193E+00
C0310 0.00 N.A. − 0.05 2.1976E+12 − 0.05 8.0560E+12 − 0.00 N.A. − 0.00 N.A. − 1.00 8.62E+10 + 1.00 2.8734E+12
C0410 0.00 N.A. ≈ 0.00 N.A. ≈ 0.00 N.A. ≈ 0.00 N.A. ≈ 0.00 N.A. ≈ 1.00 -4.2524E+00 + 0.00 N.A.
C0510 0.00 N.A. − 0.50 3.3242E+02 − 0.00 N.A. − 0.95 4.6189E+02 − 0.00 N.A. − 1.00 -2.5144E+02 + 1.00 -1.8217E+02
C0610 0.00 N.A. − 0.60 3.3175E+02 − 0.00 N.A. − 0.35 5.1800E+02 − 0.00 N.A. − 1.00 -1.7074E+02 − 1.00 -4.4032E+02
C0710 1.00 3.1996E+05 + 1.00 1.4983E+03 + 1.00 1.8820E+03 + 1.00 1.1952E+04 + 1.00 4.30E+04 + 1.00 6.38E+09 − 1.00 7.8413E+05
C0810 0.00 N.A. − 1.00 7.4840E+04 + 1.00 1.1788E+04 + 1.00 8.4285E+05 − 1.00 1.70E+08 − 1.00 6.89E+09 − 1.00 5.7511E+05
C0910 0.00 N.A. − 0.10 3.9104E+10 − 0.15 2.8293E+09 − 0.25 7.9641E+12 − 0.00 N.A. − 1.00 6.63E+11+ 1.00 1.9702E+12
C1010 0.00 N.A. − 0.10 7.2371E+10 − 0.00 N.A. − 0.05 6.2655E+12 − 0.00 N.A. − 1.00 7.29E+11 + 1.00 1.4645E+12
C1110 0.00 N.A. ≈ 0.00 N.A. ≈ 0.00 N.A. ≈ 0.00 N.A. ≈ 0.00 N.A. ≈ 0.00 N.A. ≈ 0.00 N.A.
C1210 0.00 N.A. ≈ 0.00 N.A. ≈ 0.00 N.A. ≈ 0.00 N.A. ≈ 0.00 N.A. ≈ 0.00 N.A. ≈ 0.00 N.A.
C1310 1.00 -5.4645E+01 + 1.00 -5.1442E-01 − 1.00 -5.7701E+01 + 1.00 -5.6047E+01 + 0.92 -2.29E+01 − 0.88 -2.2939E+01 − 1.00 -5.2728E+01
C1410 1.00 2.8285E+10 − 1.00 6.8833E+13 − 1.00 6.5730E+09 − 1.00 6.6381E+13 − 0.84 1.1E+13 − 1.00 1.72E+14 − 1.00 3.3602E+08
C1510 0.50 1.4737E+13 − 0.85 3.3103E+13 − 0.10 4.3403E+13 − 1.00 2.1803E+14 − 0.08 1.3E+12 − 0.08 1.77E+14 − 1.00 4.1176E+13
C1610 0.00 N.A. − 1.00 1.0481E+00 − 0.65 9.7920E-01 − 1.00 1.0557E+00 − 0.00 N.A. − 1.00 1.6437E-01 + 1.00 5.8537E-01
C1710 0.05 6.3841E-02 − 0.10 7.9555E+01 − 1.00 4.4600E+01 − 1.00 2.8494E+02 − 0.00 N.A. − 1.00 2.0511E-01 + 1.00 1.4457E+01
C1810 1.00 3.5657E+03 − 1.00 4.9241E+03 − 1.00 2.1653E+03− 1.00 9.0432E+03 − 0.00 N.A. − 1.00 1.0000E-06 + 1.00 7.8020E-01
C0130 1.00 -2.2659E-01 − 1.00 -3.2181E-01 − 1.00 -3.2167E-01 − 1.00 -2.7346E-01− 1.00 -2.12E-01 − 1.00 -2.0439E-01 − 1.00 -3.2521E-01
C0230 0.10 2.2697E+00 − 0.00 N.A. − 0.90 4.0369E+00 − 0.90 4.1554E+00 − 0.00 N.A. − 1.00 1.9177E+00 − 1.00 1.0422E-01
C0330 0.00 N.A. ≈ 0.00 N.A. ≈ 0.00 N.A. ≈ 0.00 N.A. ≈ 0.00 N.A. ≈ 0.00 N.A. ≈ 0.00 N.A.
C0430 0.00 N.A. ≈ 0.00 N.A. ≈ 0.00 N.A. ≈ 0.00 N.A. ≈ 0.00 N.A. ≈ 0.00 N.A. ≈ 0.00 N.A.
C0530 0.00 N.A.− 0.20 5.5638E+02 − 0.00 N.A. − 0.00 N.A. − 0.00 N.A. − 1.00 2.6014E+02 − 1.00 7.8396E+01
C0630 0.00 N.A. − 0.20 3.6899E+02 − 0.00 N.A. − 0.00 N.A. − 0.00 N.A. − 1.00 2.8682E+02 − 1.00 -6.3557E+01
C0730 1.00 5.3881E+07 − 1.00 4.1740E+05 + 1.00 2.0297E+06 + 1.00 2.1737E+06 + 1.00 2.80E+09 − 1.00 6.46E+10 − 1.00 1.6012E+07
C0830 0.00 N.A. − 1.00 4.7846E+06 + 1.00 1.4224E+08 + 1.00 1.1560E+08 + 1.00 3.50E+09 − 1.00 8.54E+10 − 1.00 1.4505E+08
C0930 0.00 N.A. − 0.00 N.A. − 0.00 N.A. − 0.00 N.A. − 0.00 N.A. − 1.00 1.07E+13 − 1.00 1.8516E+12
C1030 0.00 N.A. − 0.00 N.A. − 0.00 N.A. − 0.00. N.A. − 0.00 N.A. − 1.00 1.16E+13 + 1.00 2.3801E+13
C1130 0.00 N.A. ≈ 0.00 N.A. ≈ 0.00 N.A. ≈ 0.00 N.A. ≈ 0.00 N.A. ≈ 0.00 N.A. ≈ 0.00 N.A.
C1230 0.00 N.A. ≈ 0.00 N.A. ≈ 0.00 N.A. ≈ 0.00 N.A. ≈ 0.00 N.A. ≈ 0.00 N.A. ≈ 0.00 N.A.
C1330 1.00 -3.3626E+01 − 1.00 -5.2060E+01 + 1.00 -4.5892E+01− 1.00 -5.0718E+01− 0.84 -9.91E+00 − 0.96 -9.9175E+00 − 1.00 -5.1423E+01
C1430 1.00 5.7306E+11 − 1.00 1.3251E+14 − 1.00 1.2689E+12− 1.00 1.8844E+14 − 0.92 6.7E+13 − 1.00 4.15E+14 − 1.00 4.9078E+10
C1530 0.75 2.2710E+12 − 0.90 3.0351E+14 − 0.45 1.2271E+14− 1.00 1.1035E+15 − 0.20 1.4E+14 − 0.24 6.30E+14 − 1.00 3.7898E+14
C1630 0.00 N.A. − 1.00 1.1214E+00 − 0.40 1.0447E+00 − 0.05 1.1330E+00 − 0.00 N.A. − 0.76 1.0217E+00 − 1.00 9.3326E-01
C1730 0.00 N.A. − 0.25 5.8237E+02 − 0.80 6.3969E+02 − 0.00 N.A. − 0.00 N.A. − 1.00 4.4268E+01 + 1.00 9.2735E+02
C1830 0.40 1.6444E-04 − 0.35 2.3748E+04 − 1.00 1.5860E+04 − 0.95 4.0749E+04 − 0.00 N.A. − 1.00 4.5972E+01 + 1.00 2.1776E+02
Cmp. Wins: 2; Lose: 27 Wins: 5; Lose: 24 Wins: 5; Lose: 24 Wins: 6; Lose: 23 Wins: 1; Lose: 28 Wins: 13; Lose: 17 NaN
Score 104.23 89.88 93.75 86.36 116.75 63.70 41.80
p-value 5.93E-07 6.32E-05 8.22E-05 1.40E-05 2.60E-08 8.18E-02 NaN

obtains better results on 14 test instances. Overall, SaDE-SA-
GRM demonstrates a clear advantage in effectively handling
all three types of instances from CEC2010 test suite, primarily
due to the following reasons:

1) SaDE-SA-GRM integrates gradient information into its
local search procedure, enhancing its ability to locate fea-
sible solutions. Moreover, the global and local surrogate-
driven evolution processes provide sufficient generations
to accurately optimize the surrogate models of con-
straints. With well-constructed surrogate models, equality
constraints can be addressed more effectively, similar to
conventional model-free algorithms, thereby enhancing
SaDE-SA-GRM’s performance in handling equality con-
straints.

2) SaDE-SA-GRM exhibits stable and robust performance
across all three types of ECOPs. This stability can be
attributed to the proposed infill sampling criterion and the
developed stagnation mechanism within the evolutionary

strategy. The stagnation mechanism provides SaDE-SA-
GRM with fault-tolerant generations, facilitating explo-
ration of diverse search regions and reducing premature
convergence that typically arises from frequent local
searches. Furthermore, the consensus between objective
function optimization and constraint satisfaction effec-
tively mitigates search biases caused by specific infeasible
solutions with extremely small constraint violations.

Additionally, a run-time performance comparison is pro-
vided in Table S.VIII (supplementary material), highlighting
the computational complexity of SaDE-SA-GRM. Theoreti-
cally, the time complexity of the RBFN is O(I·S lnS·n),
where I is the number of training iterations, S denotes the size
of the training data, and n represents the dimensionality of the
problem. However, actual computational performance greatly
depends on the evolutionary strategy employed, potentially ex-
tending the training process. As indicated in Table S.VIII, the
run-time of SaDE-SA-GRM remains moderate for solving the
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CEC2010 test instances. It is faster than SParEA and eToSA-
DE on most test instances but exhibits slower performance
compared to GLoSADE, DSI-C2oDE, MPMLS, and SA-
TSDE. Two primary factors contribute to SaDE-SA-GRM’s
increased computational demands: 1) the introduced stagnation
mechanism occasionally discards newly generated offspring
without conducting expensive evaluations, leading SaDE-SA-
GRM to repeatedly retrain the RBFN surrogate models; 2)
SaDE-SA-GRM separately constructs surrogate models for
the objective function and each individual constraint. For
instance, when addressing the test instances C0710 and C0810,
Table S.VI (supplementary material) indicates that GRM is not
activated for constraint handling, causing exploration and ex-
ploitation of feasible solutions to rely exclusively on surrogate-
driven evolution. Consequently, SaDE-SA-GRM incurs no-
tably longer computational times compared to GLoSADE,
DSI-C2oDE, MPMLS, SA-TSDE, and eToSA-DE. However,
this strategy provides SaDE-SA-GRM more opportunities to
identify high-quality candidate solutions, ultimately resulting
in significantly improved feasible solutions for the C0710 and
C0810 test instances.

Based on these comparative analyses, it can be concluded
that SaDE-SA-GRM is highly competitive with state-of-the-
art SAEAs specifically designed for inequality-constrained
ECOPs, and notably more applicable for effectively solving
ECOPs encompassing all three types of constraints.

V. APPLICATION IN REAL-WORLD PROBLEMS

In this section, SaDE-SA-GRM is further applied to prac-
tical ECOPs, specifically pulse-width modulation (PWM) op-
timization [44], [45]. PWM optimization constitutes a com-
plex and computationally expensive task, primarily due to
the requirement of time-intensive PWM signal simulations
performed in MATLAB to assess solution quality [46]. PWM
effectively reduces switching frequency without increasing
harmonic distortion, thereby minimizing switching losses and
enhancing inverter performance. Over a fundamental period,
switching angles must be calculated to reduce current distor-
tion effectively. For multilevel inverters, the PWM optimiza-
tion can be formulated as a scalable COP as follows:

minimize fd(x), x = (x1, . . . , xn),

subject to f i
s(x) > 0, i = 1, . . . , n− 1,
fc(x) = 0,

with bounds: 0 < xi <
π
2 , i = 1, . . . , n,

(17)

where n denotes the pulse number, fd(·) represents the to-
tal harmonic distortion, f i

s(·) denotes constraints related to
amplitude changes between harmonics, and fc(·) indicates the
constraint enforcing the elimination of a specified fundamental
harmonic component. Signal simulations conducted in MAT-
LAB for six-level inverters require approximately 15 s to 30 s
per simulation on our workstation.

The proposed SaDE-SA-GRM approach is compared
against three state-of-the-art SAEAs: DSI-C2oDE, MPMLS,
and SA-TSDE, in this real-world application. Considering the
computational complexity of simulations, the MaxFEs is
limited to 1000, and each algorithm is independently executed

TABLE II
STATISTICAL RESULTS ACHIEVED BY ALGORITHMS ON PWM

OPTIMIZATION PROBLEMS

Level & DSI-C2oDE MPMLS SA-TSDE SaDE-SA-GRM
Pulse SR AFV SR AFV SR AFV SR AFV
3 & 25 1.0 0.0572 1.0 0.2036 1.0 0.1088 1.0 0.1624
5 & 25 1.0 0.2251 0.6 0.2479 1.0 0.4209 1.0 0.2116
7 & 25 1.0 0.1469 0.6 0.3180 1.0 0.4686 1.0 0.1418
9 & 30 1.0 0.3353 0.5 0.4749 1.0 0.7156 1.0 0.1748
11 & 30 0.9 0.3155 0.3 0.4012 1.0 0.2787 1.0 0.0832
13 & 30 0.5 0.2693 0.2 0.3276 1.0 0.3415 1.0 0.0706

ten times. Parameter settings for DSI-C2oDE, MPMLS, and
SA-TSDE follow those recommended in their original publi-
cations, while the configuration of SaDE-SA-GRM aligns with
the specifications provided in Section IV-A. Statistical results
of these comparative experiments are presented in Table II.

From Table II, it is evident that with increasing inverter
levels, DSI-C2oDE and MPMLS fail to consistently handle
constraints across ten independent runs. Conversely, SA-TSDE
and SaDE-SA-GRM achieve a 100% SR for all tested inverter
levels. Furthermore, SaDE-SA-GRM demonstrates superior
overall performance in terms of the AFV compared to SA-
TSDE. Hence, SaDE-SA-GRM exhibits competitive perfor-
mance relative to DSI-C2oDE, MPMLS, and SA-TSDE in
addressing complex real-world PWM optimization problems.

VI. CONCLUSION

In this work, we propose a SAEA, referred to as SaDE-
SA-GRM, to solve ECOPs, targeting all three types of con-
straints within a strict budget of 1000 expensive FEs. The
proposed SaDE-SA-GRM incorporates three key evolutionary
strategies: a stagnation strategy for managing surrogate-driven
evolution and model-free optimization, a consensus-aware
infill sampling criterion, and a cost-effective GRM. During
the evolutionary process, the stagnation strategy is designed
to balance the surrogate-driven evolution for effective explo-
ration and the model-free GRM for economical exploitation
of feasible regions. The proposed infill sampling criterion,
developed based on the concept of consensus, considers both
objective function optimization and constraint satisfaction.
Finally, GRM is developed gradient-based mutation from our
proposed reused strategy to address complex and challenging
constraints in a economical manner.

To evaluate the effectiveness of SaDE-SA-GRM, we inves-
tigate parameter sensitivity, the influence of each evolutionary
strategy, and the cost-efficiency of GRM under the stagnation
strategy. The overall performance is validated using 58 ex-
pensive test instances from the CEC2006 and CEC2010 test
sets, encompassing three types of ECOPs: 1) those with only
inequality constraints, 2) those with only equality constraints,
and 3) those with both equality and inequality constraints.
Empirical results demonstrate that SaDE-SA-GRM achieves
superior or highly competitive performance compared to six
state-of-the-art SAEAs.

For future work, we aim to eliminate explicit gradient com-
putation and instead explore alternative methods for extract-
ing gradient information for mutation. Additionally, extend-
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ing SaDE-SA-GRM to address expensive constrained multi-
objective optimization problems presents a promising research
direction.
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Algorithm S.1: SaDE-SA-GRM-CVOB
Input:

• the original population: P = {p1, . . . ,pNP };
• the newly evolved population: Q = {q1, . . . ,qNP };
• the associated parameters: cg and ch;

Set S = {};
for i = 1 to NP do

if CV (qi) ≤ CV (pi) then S = S ∪ {qi};
if S is not empty then

Perform an expensive evaluation of the individual with the minimum objective value in S (denoted q);
Identify the individual in P with the maximum overall constraint violation (denoted p);
if q is preferred to p according to the feasibility rule then

Replace p with q and output P ;
else Output stagnation;

else Output stagnation;

Algorithm S.2: SaDE-SA-GRM-CssCV
Input:

• the original population: P = {p1, . . . ,pNP };
• the newly evolved population: Q = {q1, . . . ,qNP };
• the associated parameters: cg and ch;

Set S = {};
for i = 1 to NP do

if gj(qi) ≤ gj(pi), j = 1, . . . , cg and ht(qi) ≤ ht(pi), t = 1, . . . , ch then S = S ∪ {qi};
if S is empty then

for i = 1 to NP do
if CV (qi) ≤ CV (pi) then S = S ∪ {qi};

if S is not empty then
Identify the best individual in S with the minimum overall constraint violation (denoted q);
Perform an expensive evaluation of the individual q;
Identify the individual in P with the maximum overall constraint violation (denoted p);
if q is preferred to p according to the feasibility rule then

Replace p with q and output P ;
else Output stagnation;

else Output stagnation;
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TABLE S.I
PROPERTIES OF CEC2006 TEST PROBLEMS

Inst. n Objective Type Number of Constraints Feasibility Region
ch cg ρ(%)

G01 13 Quadratic 0 9 0.0111
G02 20 Nonlinear 0 2 99.8474
G03 10 Polynomial 1 0 0.0000
G04 5 Quadratic 0 6 52.1230
G05 4 Cubic 3 2 0.0000
G06 2 Cubic 0 2 0.0066
G07 10 Quadratic 0 8 0.0003
G08 2 Nonlinear 0 2 0.8560
G09 7 Polynomial 0 4 0.5121
G10 8 Linear 0 6 0.0010
G11 2 Quadratic 1 0 0.0000
G12 3 Quadratic 0 1 4.7713
G13 5 Nonlinear 3 0 0.0000
G14 10 Nonlinear 3 0 0.0000
G15 3 Quadratic 2 0 0.0000
G16 5 Nonlinear 0 38 0.0204
G17 6 Nonlinear 4 0 0.0000
G18 9 Quadratic 0 13 0.0000
G19 15 Nonlinear 0 5 33.4761
G21 7 Linear 5 1 0.0000
G23 9 Linear 4 2 0.0000
G24 2 Linear 0 2 79.6556

TABLE S.II
PROPERTIES OF CEC2010 TEST PROBLEMS

Inst. Objective Type Number of Constraints / Type of constraint Feasibility Region ρ(%)
ch cg n = 10 n = 30

C01 Non Separable 0 2/Non Separable 99.7689 100.0000
C02 Separable 1/Separable 2/Separable 0.0000 0.0000
C03 Non Separable 1/Non Separable 0 0.0000 0.0000
C04 Separable 2/Non Separable,

2/Separable
0 0.0000 0.0000

C05 Separable 2/Separable 0 0.0000 0.0000
C06 Separable 2/Rotated 0 0.0000 0.0000
C07 Non Separable 0 1/Separable 50.5123 50.3725
C08 Non Separable 0 1/Rotated 37.9512 37.5278
C09 Non Separable 1/Separable 0 0.0000 0.0000
C10 Non Separable 1/Rotated 0 0.0000 0.0000
C11 Rotated 1/Non Separable 0 0.0000 0.0000
C12 Separable 1/Non Separable 1/Separable 0.0000 0.0000
C13 Separable 0 2/Separable, 1/Non

Separable
0.0000 0.0000

C14 Non Separable 0 3/Separable 0.3112 0.6123
C15 Non Separable 0 3/Rotated 0.3210 0.6023
C16 Non Separable 2/Separable 2/Separable, 1/Non

Separable
0.0000 0.0000

C17 Non Separable 1/Separable 2/Non Separable 0.0000 0.0000
C18 Non Separable 1/Separable 1/Separable 0.0010 0.0000
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TABLE S.III
STATISTICAL RESULTS FOR THE SENSITIVITY ANALYSIS OF THE PARAMETER Tm

Inst.
Tm = 1 Tm = 20 Tm = 50 Tm = 100 Tm = 200 Tm = 300

SR AFV SR AFV SR AFV SR AFV SR AFV SR AFV
G01 1.00 -14.8856 1.00 -15.0000 1.00 -15.0000 1.00 -15.0000 1.00 -15.0000 1.00 -15.0000
G02 1.00 -0.4878 1.00 -0.4730 1.00 -0.4979 1.00 -0.4082 1.00 -0.4359 1.00 -0.3870
G03 1.00 -0.4377 1.00 -0.7999 1.00 -0.8012 1.00 -0.6855 1.00 -0.6002 1.00 -0.6635
G04 1.00 -30665.5385 1.00 -30665.5387 1.00 -30665.5387 1.00 -30665.5387 1.00 -30665.5387 1.00 -30665.5387
G05 0.00 5031.5664 1.00 5126.4969 1.00 5126.4967 1.00 5126.4967 1.00 5126.4967 1.00 5126.4967
G06 0.45 -5387.8185 1.00 -6961.8139 1.00 -6961.8138 1.00 -6961.8138 1.00 -6961.8139 1.00 -6961.8139
G07 1.00 24.3600 1.00 24.3063 1.00 24.3064 1.00 24.3066 1.00 24.3068 1.00 24.3063
G08 0.80 -0.0584 1.00 -0.0686 1.00 -0.0614 1.00 -0.0414 1.00 -0.0616 1.00 -0.0546
G09 1.00 808.5231 1.00 892.8880 1.00 921.2805 1.00 912.6362 1.00 825.3350 1.00 817.6810
G10 0.90 7001.3782 1.00 7190.0313 1.00 7049.5028 1.00 7049.3564 1.00 7049.7524 1.00 7049.5106
G11 0.10 0.8162 1.00 0.7499 1.00 0.7499 1.00 0.7499 1.00 0.7499 1.00 0.7499
G12 1.00 -0.9972 1.00 -0.9856 1.00 -0.9619 1.00 -0.9689 1.00 -0.9597 1.00 -0.9714
G13 0.75 0.9176 1.00 1.2530 1.00 1.1920 1.00 1.4615 1.00 1.4820 1.00 0.8213
G14 0.00 -106.8524 1.00 -47.7636 1.00 -47.7649 1.00 -47.7649 1.00 -47.7649 1.00 -47.7648
G15 0.00 965.7521 1.00 961.7150 1.00 961.7150 1.00 961.7150 1.00 961.7150 1.00 961.7150
G16 0.90 -1.7420 1.00 -1.8908 1.00 -1.9050 1.00 -1.9052 1.00 -1.9052 1.00 -1.9052
G17 0.00 8753.4847 1.00 8856.9857 1.00 8859.1159 1.00 8867.4774 1.00 8878.6355 1.00 8882.7026
G18 1.00 -0.7737 1.00 -0.8660 1.00 -0.8404 1.00 -0.8447 1.00 -0.8278 1.00 -0.7672
G19 1.00 42.1523 1.00 44.3972 1.00 48.3852 1.00 43.5966 1.00 46.6711 1.00 41.0384
G21 0.00 37.4318 0.00 39.7798 0.00 144.8118 0.70 236.0085 1.00 262.6105 1.00 249.2311
G23 0.00 -1235.0056 0.60 -399.6546 1.00 -400.0551 1.00 -400.0551 1.00 -400.0551 1.00 -400.0551
G24 1.00 -5.5080 1.00 -5.5080 1.00 -5.5080 1.00 -5.5080 1.00 -5.5080 1.00 -5.5080
Average 0.6318 -670.6238 0.9364 -680.0800 0.9545 -680.1451 0.9864 -676.2150 1.00 -678.3053 1.00 -679.3717
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Fig. S.1. Evolution of the overall constraint violations of SaDE-SA-GRM on 12 test instances from CEC2006.
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Fig. S.2. Evolution of the objective function values of SaDE-SA-GRM on 12 test instances from CEC2006.
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TABLE S.IV
STATISTICAL RESULTS FOR THE SENSITIVITY ANALYSIS OF THE PARAMETER snum

Inst.
snum = 1 snum = 5 snum = 10

SR AFV SR AFV SR AFV
G01 1.00 -15.0000 1.00 -15.0000 1.00 -15.0000
G02 1.00 -0.4266 1.00 -0.4359 1.00 -0.4312
G03 1.00 -0.8290 1.00 -0.6002 1.00 -0.7980
G04 1.00 -30665.5387 1.00 -30665.5387 1.00 -30665.5387
G05 1.00 5126.4967 1.00 5126.4967 1.00 5126.4967
G06 1.00 -6961.8139 1.00 -6961.8139 1.00 -6961.8138
G07 1.00 24.3071 1.00 24.3068 1.00 24.3075
G08 1.00 -0.0452 1.00 -0.0616 1.00 -0.0756
G09 1.00 841.8100 1.00 825.3350 1.00 837.8380
G10 1.00 7049.6409 1.00 7049.7524 1.00 7050.2570
G11 1.00 0.7499 1.00 0.7499 1.00 0.7499
G12 1.00 -0.9540 1.00 -0.9597 1.00 -0.9615
G13 1.00 1.3927 1.00 1.4820 1.00 0.9621
G14 1.00 -47.7648 1.00 -47.7649 1.00 -47.7648
G15 1.00 961.7150 1.00 961.7150 1.00 961.7150
G16 1.00 -1.9050 1.00 -1.9052 1.00 -1.9051
G17 1.00 8887.7479 1.00 8878.6355 1.00 8865.7985
G18 1.00 -0.7339 1.00 -0.8278 1.00 -0.8087
G19 1.00 44.6715 1.00 46.6711 1.00 50.6656
G21 1.00 266.5107 1.00 262.6105 1.00 263.1270
G23 1.00 -400.0545 1.00 -400.0551 1.00 -400.0518
G24 1.00 -5.5080 1.00 -5.5080 1.00 -5.5080
Average 1.00 -677.0696 1.00 -678.3053 1.00 -678.1245
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TABLE S.V
STATISTICAL RESULTS FOR THE INFLUENCE ANALYSIS OF THE PROPOSED INFILL SAMPLING CRITERION

Inst.
SaDE-SA-GRM-CVOB SaDE-SA-GRM-CssCV SaDE-SA-GRM

SR AFV SR AFV SR AFV
G01 1.00 -14.7656 − 1.00 -15.0000 ≈ 1.00 -15.0000
G02 1.00 -0.3791 − 1.00 -0.4316 − 1.00 -0.4359
G03 1.00 -0.9042 + 1.00 -0.7920 + 1.00 -0.6002
G04 1.00 -30665.5387 ≈ 1.00 -30665.5387 ≈ 1.00 -30665.5387
G05 1.00 5126.4981 − 1.00 5126.4967 ≈ 1.00 5126.4967
G06 1.00 -6961.8137 ≈ 1.00 -6961.8139 ≈ 1.00 -6961.8139
G07 1.00 24.3615 − 1.00 24.3064 ≈ 1.00 24.3068
G08 1.00 -0.0622 ≈ 1.00 -0.0616 ≈ 1.00 -0.0616
G09 1.00 819.3198 + 1.00 1000.0135 − 1.00 825.3350
G10 1.00 7105.3928 − 1.00 7050.3495 − 1.00 7049.7524
G11 1.00 0.7499 ≈ 1.00 0.7499 ≈ 1.00 0.7499
G12 1.00 -0.9582 − 1.00 -0.9651 + 1.00 -0.9597
G13 1.00 0.7372 + 1.00 1.6301 − 1.00 1.4820
G14 1.00 -47.0485 − 1.00 -47.7648 ≈ 1.00 -47.7649
G15 1.00 961.7150 ≈ 1.00 961.7150 ≈ 1.00 961.7150
G16 1.00 -1.9046 ≈ 1.00 -1.9052 ≈ 1.00 -1.9052
G17 1.00 8881.7646 − 1.00 8879.3787 − 1.00 8878.6355
G18 1.00 -0.7352 − 1.00 -0.8469 + 1.00 -0.8278
G19 1.00 53.3500 − 1.00 46.6744 − 1.00 46.6711
G21 1.00 289.2162 − 1.00 277.7633 − 1.00 262.6105
G23 1.00 -371.6532 − 1.00 -400.0550 ≈ 1.00 -400.0551
G24 1.00 -5.5080 ≈ 1.00 -5.5080 ≈ 1.00 -5.5080
Cmp. Wins: 3; Lose: 12; Ties: 5 Wins: 3; Lose: 7; Ties 12 NaN
Score 45.04 29.15 26.29
p-value 2.96E-02 1.54E-01 NaN
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TABLE S.VI
STATISTICAL RESULTS FOR THE INFLUENCE ANALYSIS OF GRM

Inst.
SaDE-SA-GRM SaDE

SR AFV AOCV SR AFV AOCV
C0210 1.00 -1.7193E+00 0.0 0.30 -1.5919 4.5914E-04
C0230 1.00 1.0422E-01 0.0 0.15 1.7641 2.7089E-04
C0310 1.00 2.8734E+12 0.0 0.25 6.6906E+12 2.5597E-03
C0510 0.85 -1.7967E+02 9.96E-04 0.30 -4.0348E+02 5.9454E-01
C0530 1.00 7.8396E+01 0.0 0.00 N/A 1.0854E+00
C0630 1.00 -6.3557E+01 0.0 0.00 N/A 4.2152E-01
C0910 1.00 1.9702E+12 0.0 0.00 N/A 2.5546E-01
C0930 1.00 1.8516E+14 0.0 0.00 N/A 1.0793E+00
C1010 1.00 1.4645E+12 0.0 0.00 N/A 3.2514E-01
C1030 1.00 2.3801E+13 0.0 0.00 N/A 8.2775E-01
C1510 1.00 4.1176E+13 0.0 0.35 3.2944E+13 4.7604E+01
C1530 1.00 3.7898E+14 0.0 0.10 2.1046E+14 1.1850E+02
C1630 1.00 9.3333E-01 0.0 0.20 8.6371E-01 2.2986E-03
C1710 1.00 1.4457E+01 0.0 0.00 N/A 1.4995E-02
C1730 1.00 9.2735E+02 0.0 0.00 N/A 6.2842E-02
C1810 1.00 7.8021E-01 0.0 0.20 1.3353E+03 2.0852E-03
C1830 1.00 2.1776E+02 0.0 0.00 N/A 3.5281E-03
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TABLE S.VII
STATISTICAL RESULTS FOR THE COST-EFFECTIVENESS ANALYSIS OF GRM

Inst. SR AT Inst. SR AT Inst. SR AT
G01 1.00 0.00 G02 1.00 0.00 G03 1.00 0.00
G04 1.00 0.00 G05 1.00 0.00 G06 1.00 0.55
G07 1.00 0.00 G08 1.00 0.00 G09 1.00 0.00
G10 1.00 0.00 G11 1.00 0.00 G12 1.00 0.00
G13 1.00 0.00 G14 1.00 0.00 G15 1.00 0.00
G16 1.00 0.00 G17 1.00 0.00 G18 1.00 0.00
G19 1.00 0.00 G21 1.00 2.10 G23 1.00 0.00
G24 1.00 0.00 C0110 1.00 0.00 C0210 1.00 1.25
C0310 1.00 1.15 C0510 0.85 1.80 C0610 1.00 0.80
C0710 1.00 0.00 C0810 1.00 0.00 C0910 1.00 1.35
C1010 1.00 1.40 C1310 1.00 0.00 C1410 1.00 0.00
C1510 1.00 0.85 C1610 1.00 0.85 C1710 1.00 1.40
C1810 1.00 1.75 C0130 1.00 0.00 C0230 1.00 1.00
C0530 1.00 2.00 C0630 1.00 2.00 C0730 1.00 0.00
C0830 1.00 0.00 C0930 1.00 1.00 C1030 1.00 1.00
C1330 1.00 0.00 C1430 1.00 0.00 C1530 1.00 1.00
C1630 1.00 3.10 C1730 1.00 1.00 C1830 1.00 1.00



10

TABLE S.VIII
RUN-TIME RESULTS OF THE SIX COMPARED ALGORITHMS AND SADE-SA-GRM

Inst. &
GLoSADE DSI-C2oDE MPMLS SA-TSDE SParEA eToSA-DE SaDE-SA-GRM

Time Unit (min)
C0110 0.99 0.85 0.10 0.12 6.6 7.8 4.57
C0210 0.91 0.40 0.11 0.03 12.6 24 5.30
C0310 0.90 1.08 0.11 0.03 60 42 5.07
C0410 0.91 0.62 0.11 0.03 37.8 18 4.98
C0510 0.90 0.35 0.10 0.03 76.8 18.6 5.12
C0610 0.90 0.43 0.10 0.03 87 20.4 5.46
C0710 0.90 0.68 0.11 0.08 138.6 7.8 5.36
C0810 0.91 0.59 0.11 0.14 150 8.4 5.29
C0910 0.92 0.21 0.11 0.03 180.6 42 5.09
C1010 0.94 0.20 0.11 0.03 208.2 25.2 5.05
C1110 0.95 0.94 0.11 0.03 233.4 25.8 4.51
C1210 0.95 1.05 0.11 0.03 174 19.2 5.06
C1310 0.91 0.43 0.11 0.07 142.2 10.2 6.68
C1410 0.92 0.44 0.11 0.10 150.6 11.4 5.11
C1510 0.92 0.46 0.10 0.07 159.6 21 4.96
C1610 0.93 0.45 0.10 0.05 137.4 34.8 5.02
C1710 0.91 0.29 0.10 0.05 183 20.4 5.28
C1810 0.88 0.68 0.10 0.06 254.4 21.6 4.56
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APPENDIX A
EXAMPLE OF GRM EMPLOYMENT

Considering the test function C1610 from CEC2010 [1], the optimization problem is formulated as follows:

minimize f(x) =
10∑
i=1

z2
i

4000 −
10∏
i=1

cos( zi√
i
) + 1, x = (x1, . . . , x10), z = x− o

subject to g1(x) =
10∑
i=1

[z2i − 100 cos(πzi) + 10] ≤ 0

g2(x) =
10∏
i=1

zi ≤ 0

h1(x) =
10∑
i=1

(zi sin(
√
|zi|)) = 0

−10 ≤ xi ≤ 10, i = 1, . . . , 10,
o = (0.365972807627352, 0.429881383400138,

−0.420917679577772, 0.984265986788929,
0.324792771198785, 0.463737106835568,
0.989554882052943, 0.307453878359996,
0.625094764380575,−0.358589007202526)

, (1)

The objective function f , inequality constraints g1 and g2, and equality constraint h1 are shifted by o. As these functions are
provided in a black-box format, gradients are typically approximated numerically. For instance, the gradient of h1(x) with
respect to the ith variable is approximated as:

∂h1

∂xi
(x) =

h1(x1, . . . , xi + δ, . . . , xn)− h1(x)

δ
, (2)

where δ = 0.0001 in this study.
Based on the experimental record from the median of 20 independent runs, the initial infeasible solution and the corresponding

number of function evaluations (nFEs) input to GRM are x = (−0.4357, 2.6032,−6.2176, 7.0225, 3.3472,−1.5740,−2.0282,
2.2224, 8.6937,−6.0925) and 347, respectively. To approximate gradients of constraints g1, g2, and h1 for each variable using
(2), ten intermediate solutions are generated as follows:

x1 = (x1 + δ) + x2, . . . , x10,
x2 = x1 + (x2 + δ), . . . , x10,

· · · ,
x10 = x1 + x2, . . . , (x10 + δ).

(3)

Evaluating these intermediate solutions incurs ten additional expensive function evaluations, thus increasing nFEs from 347
to 357. After evaluating these intermediate points, the gradient matrix ∇xG is constructed as:

∇xG =


∂g1
∂x1

(x), ∂g1
∂x2

(x), . . . , ∂g1
∂xn

(x)

∂g2
∂x1

(x), ∂g2
∂x2

(x), . . . , ∂g2
∂xn

(x)

∂h1

∂x1
(x), ∂h1

∂x2
(x), . . . , ∂h1

∂xn
(x)

 . (4)

In our illustrative example, the numerical gradient matrix is:

∇xG =



0, 0,−1.06032245

0, 0,−1.0664004

0, 0, 0.22402536

0, 0, 0.31988515

0, 0,−0.84085059

0, 0,−1.09168769

0, 0,−0.84235939

0, 0,−1.11118591

0, 0, 1.05986371

0, 0, 0.19898131



T

. (5)
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Subsequently, the Moore-Penrose pseudo-inverse is employed to compute:

−∇−1
x G =



0, 0,−0.14290008

0, 0,−0.1437192

0, 0, 0.03019199

0, 0, 0.04311105

0, 0,−0.11332177

0, 0,−0.14712718

0, 0,−0.11352511

0, 0,−0.14975496

0, 0, 0.14283825

0, 0, 0.02681679



. (6)

Since x has already been evaluated, the constraint violation vector C(x) is directly available. In this example, C(x) =
[0, 0, 0.1627]. A new candidate solution x′ is then generated as:

x′ = −∇−1
x GC(x) + x (7)

yielding:
x′ = (−0.4124, 2.6266,−6.2225, 7.0154, 3.3656,−1.5500,−2.0097, 2.2467, 8.6704,−6.0969). (8)

Evaluating x′ requires one additional expensive function evaluation, thus incrementing nFEs from 357 to 358. Correspondingly,
the constraint violation vector at x′ is computed as C(x′) = [0, 0, 0.0002].

It is evident that a clear improvement exists from solution x to x′. Consequently, GRM is not terminated but proceeds to
utilize x′ for the subsequent iteration. Different from the initial solution x, the gradient matrix of constraints g1, g2, and h1

at x′ is not re-approximated; instead, the previously ∇xG is reused. Specifically, the next candidate solution is computed as:

x′′ = −∇−1
x GC(x′) + x′, (9)

yielding:
x′′ = (−0.4123, 2.6266,−6.2225, 7.0154, 3.3656,−1.5500,−2.0097, 2.2467, 8.6704,−6.0969). (10)

Evaluating x′′necessitates one additional expensive FE, thereby increasing nFEs from 358 to 359. The constraint violation
vector for x′′ is obtained as C(x′′) = [0, 0, 6.5294E − 07]. Similarly, in the third iteration, the solution is updated to

x′′′ = −∇−1
x GC(x′′) + x′′, (11)

with constraint violation vector C(x′′′) = [0, 0, 1.8587E−09]. In this illustrative example, six iterations are executed, ultimately
achieving zero overall constraint violations.

Fig. S.3 schematically illustrates the GRM procedure within a two-dimensional representation. According to x and C(x),
although the input solution x for GRM is infeasible, it satisfies the inequalities g1 and g2. The activation of GRM indicates that
neither global nor local surrogate-driven evolution can further enhance the solution quality, specifically highlighting the inability
of these methods alone to handle the equality constraint h1. The initial infeasible solution (represented by the black point x)
and the iteratively improved solutions (depicted as gray points x′, x′′, x′′′) progressively approach feasibility along the gradient
direction indicated by the red line. The gradient information, numerically approximated only once, effectively addresses the
equality constraint h1. This demonstrates GRM’s effectiveness in resolving constraints that surrogate-driven evolution methods
alone cannot adequately manage.
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Fig. S.3. A schematic illustration of the GRM process applied to the given example. The black point x represents the initial infeasible solution. The gray-
shaded region comprises solutions satisfying constraints g1 and g2 but violating the equality constraint h1, whereas the blue line denotes solutions satisfying
h1 but violating g1 and g2. The red line indicates the gradient direction of the constraint h1 at the solution x.
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