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A B S T R A C T

Antenna design is a kind of electromagnetic (EM) engineering problem and normally formulated as complex
nonlinear optimization problem. Evolutionary computation (EC) was combined early to antenna design due to
its powerful nonlinear optimization capability. Modern antenna design depends on EM simulation software to
solve Maxwell equations, which is time-consuming and makes it nontrivial for application of EC in antenna
design. Machine learning (ML) is widely used to accelerate antenna design by building surrogate model of
EM simulation. However, existing surveys focus on one of these two artificial intelligence (AI) methods (EC
and ML) in antenna applications, and have overlooked differences between two cases of surrogate model for
antenna EM simulation (response modeling and specification modeling). This review paper aims to summarize
the applications of both EC and ML in antenna design over the past decades and highlight advantages and
disadvantages of two kinds of EM simulation surrogate models. The survey begins with a short overview
of ML and EC basics. Then various applications are discussed in three parts, including antenna optimization
with EC, ML-assisted antenna optimization with response modeling and ML-assisted antenna optimization with
specification modeling. Finally, challenges and potential future directions for applying ML and EC in antenna
design are discussed, as well as emerging trends. This survey provides a comprehensive introduction to ML
and EC in antenna design and contributes to the investigation of AI-empowered antenna design.
1. Introduction

1.1. Antenna design basics

Antennas are critical signal transceiver devices for wireless com-
munications, radar, and many other radio applications, which serve
as converters that convert guided waves on transmission lines to radio
waves in an unbounded medium (usually free space) when transmitting
and vice versa when receiving (Balanis, 2016). The working principle
of the antenna is illustrated in Fig. 1. When there is alternating current
passing through the wire, the radiation of electromagnetic (EM) waves
can occur, and the radiation capacity is related to the length and shape
of the wire. If two wires are close together and the electric field is
bound between the two wires, then the radiation is weak. If the two
wires are open, the electric field is spread in the surrounding space,
then the radiation is enhanced. It should be noted that when the length
of the wire is much less than the wavelength, the radiation is very
weak. When the length of the wire increase to be comparable to the
wavelength, the current on the wire will greatly increase, forming a
stronger radiation.
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Antenna design generally analyzes and optimizes design parameters
(geometry, excitation, array distribution, etc.) according to antenna
scattering performance (voltage standing wave ratio (VSWR), reflection
coefficient 𝑆11, isolation, etc.) and radiation performance (gain, pat-
tern, side-lobe level (SLL), etc.). Generally speaking, a good antenna
design needs to minimize VSWR and 𝑆11, which means less return
loss and greater energy radiation efficiency. To minimize isolation
achieves smaller mutual coupling effect between array elements. Also,
maximizing the gain and minimizing SLL enable better directivity of
radiation pattern. When it comes to beamforming or beam scanning,
antenna pattern plays a key role to match the desired pattern that
difference between patterns is minimized.

Notably, there are two forms to describe antenna performance,
including response and specification. Response is often used to observe
antenna performance characteristics, such as frequency characteristics
of 𝑆11, radiation characteristics of pattern, etc. Specifications are often
used to formulate objectives and constraints of antenna design opti-
mization problem. Difference between them is illustrated in Fig. 2. Take
𝑆11 as example, antenna design parameters are firstly analyzed by EM
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Fig. 1. Illustration of the working principle of the antenna.
Fig. 2. Illustration of difference between response and specification (𝑆11 is taken as example).
Table 1
Terminology correspondence in machine learning and evolutionary computation for antenna design.

Input characteristics Output characteristics

Antenna design Design parameters Response Specification
Machine learning Features Label Label
Evolutionary computation Decision variables – Objectives/Constraints
fullwave solver and 𝑆11 response within band of interest is obtained.
hen specifications are calculated according to problem formulation
ased on response. For example, maximum of 𝑆11 within band of
nterest is normally formulated as specification to optimize 𝑆11 value

over whole frequency band.

1.2. Traditional antenna design methods

To find best designs that fulfill the desired performance, it is a com-
mon practice in the early stage to fine-tune the geometric parameters
of antenna structures for performance improvement based on ‘‘cut and
try’’ and anechoic chamber measurement (Yaghjian, 1986). This is a
time-consuming process of trial and error with high physical and labor
cost, which is no longer suitable for contemporary antenna design since
antenna structures become increasingly complex and make it difficult
for engineers to make the right decisions based on experience.

Later, computational electromagnetics methods, such as the method
of moments (Gibson, 2021), finite element method (Jin, 2015) and the
finite-difference time-domain method (Taflove et al., 2005), etc, have
been widely developed with analytically numerical methods in terms of
both integral equations and differential equations to analyze antenna
performance with high accuracy, which have promoted booming of
EM simulators (Grout et al., 2019) and become the mainstream tool
of current antenna design to greatly reduce the cost and cycle.

Naturally, this led to the combination of optimization methods to
cope with nonlinear parameters optimization, which facilitated the
automation of antenna design and greatly reduced the reliance on engi-
neer experience. Classical mathematical optimizers have been applied,
such as gradient descent method (Zeng et al., 2023), quasi-newton
method (Hassan et al., 2011) and sequential least squares program-
ming (Gong et al., 2023). However, these local optimization methods
are very sensitive to the initial design or starting point, and tend to
converge to the local optimum around the initial one, even if multiple
restarts cannot guarantee satisfactory results.
2 
1.3. Evolutionary computation for antenna design

Evolutionary computation (EC), specifically evolutionary algorithms
(EAs), have been widely recognized as bio-inspired meta-heuristic
global optimization algorithms to cope with antenna design problems,
where design parameters are normally regarded as decision variables
and specification as objectives or constraints of optimization problem
(see Table 1). Compared to traditional optimization methods, EAs
search within the whole design space in parallel based on population,
which are less sensitive to the initial design and have distinguished
themselves in terms of their powerful global search ability to find
more competitive near-optimal solution. Although the multimodal and
nonlinear characteristics of antenna design problems sometimes have
gradient disappearance or gradient explosion and make EAs easily
fall into local optima, EAs still has considerable advantages over the
traditional design methods. For example, EAs have shown significant
improvements over traditional methods in microstrip antennas struc-
ture optimization (Deb et al., 2011) and array synthesis (Gong et al.,
2023).

The primary and common EC techniques used for antenna optimiza-
tion mainly include genetic algorithm (GA) (Weile and Michielssen,
1997), particle swarm optimization (PSO) (Jin and Rahmat-Samii,
2007) and differential evolution (DE) (Rocca et al., 2011; Goudos,
2017; Kurup et al., 2003) for single objective optimization as well as
multiobjective evolutionary algorithm (MOEA) (Santos et al., 2020)
such as nondominated sorting genetic algorithm II (NSGA-II) (Wang
et al., 2019) and multiobjective evolutionary algorithm based on de-
composition (MOEA/D) (Carvalho et al., 2012) for multiobjective opti-
mization.

When constraints are involved in antenna problem formulation, EAs
with constraint-handling technique (CHT) are applied (Xu et al., 2020),
mainly including penalty function method, feasibility rule method and
dynamic multiobjective method. Constraints in antenna design prob-

lems divide design space into feasible region and infeasible region. In
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Fig. 3. Illustration of numerical difference between response modeling and specification modeling.
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particular, infeasible solutions cannot be evaluated when hard con-
straints are involved in antenna problems, for example, violation of
the minimum array spacing constraint in array design will result in
simulation failure, which greatly limits the searchable space of EAs.

1.4. Machine learning assisted optimization for antenna design

Although EAs have been widely applied to antenna design, hundreds
of thousands of EM evaluations are required to obtain near-optimal de-
signs, which brings computationally expensive cost since one fullwave
EM simulation is time-consuming for contemporary complex antenna
design. To lower the computational overhead, machine learning (ML)
methods have been incorporated to accelerate antenna optimization by
building surrogate model of EM simulation from the way of expen-
sive EM theories (called response model) and expensive objective or
constrained functions (called specification model).

Specifically, ML methods, typically regression, learn from simu-
lated or measured data with the design parameters of the antenna
as feature and response/specification as label (see Table 1). Then
response/specification can be predicted on unevaluated designs to
replace EM fullwave simulation and further combined with EAs to
locate candidate designs for EM evaluation, thereby greatly reducing
computational cost. ML have shown significant improvements over
traditional methods with a 3 to 7 times speed enhancement for antenna
design optimization (Liu et al., 2014). Additionally, ML methods can
conquer multimodal and nonlinear characteristics of antenna design
problems in manner of fitness smoothing, where an easier surrogate
fitness problems is approximated to guide the search. When constraints
are involved in antenna specification, ML methods are further applied
to approximate each constraint function. The feasible region of surro-
gate is determined but less reliable due to prediction uncertainty, which
brings additional challenges to optimization.

The primary and common ML techniques used for antenna modeling
include support vector regression (SVR) (Prado et al., 2018a,b, 2019,
2022, 2023), Gaussian process regression (GPR) (Liu et al., 2014, 2021;
Jacobs and Koziel, 2013; Jacobs, 2014; Wang et al., 2021) and artificial
neural networks (ANN) (Xiao et al., 2018; Gong et al., 2020; Cui et al.,
2021; Budak et al., 2021; Papathanasopoulos et al., 2023).

1.5. Further illustration of two kinds of surrogate model for antenna design

To replace fullwave simulation and accelerate antenna optimization,
both response and specification have been modeled with ML (Liu et al.,
2021). Response modeling and specification modeling normally share
the same feature description, but differ in the physical meaning of
the label, where response modeling puts more emphasis on predicting
EM distribution of solving Maxwell’s equations and the specification
modeling more on optimization. Main differences between them are
discussed below.

From perspective of numerical computation (refer to Fig. 3), an-

tenna response is vector while specification is scalar. Dimension of m

3 
response normally depends on the granularity of sampling and be-
comes extremely high. This poses challenges that numerous models are
required to predict on each dimension since traditional ML methods
deal with scalar label. This also brings difficulties similar to ‘‘curse of
dimensionality’’ to use a more complex model with many outputs that
model complexity becomes excessively high and a rapidly increasing
number of data are required. On the contrary, traditional ML methods
can directly treat specifications as labels and get good application.

From perspective of engineering application (refer to Fig. 4), re-
sponse modeling is more informative that functional relationship from
angular and frequency to response is learned while specification mod-
eling does not contain these EM knowledge. For example, antenna
responses, such as 𝑆11 within the band of interest, radiation pattern
over all interested radiation angles, are directly regarded as label in
response modeling to provide more useful EM information under the
same design. On the contrary, maximum of 𝑆11 within the band of
nterest, SLL, are regarded as label in specification modeling and cause
nformation loss.

Moreover, compared to specification modeling, response modeling
rovides more degrees of design freedom, which can be applied to
ot only parameters optimization but also more complex design sce-
arios with high simulation expense such as redesign under different
perating conditions (operating frequency and bandwidth), various
aterial parameters (substrate permittivity and thickness), statistical

nalysis (e.g., yield estimation Ochoa and Cangellaris, 2013), as well
s robust design (e.g., optimization accounting for manufacturing tol-
rances Koziel and Bandler, 2014, design centering Abdel-Malek et al.,
006).

From perspective of assisting optimization (refer to Fig. 5), response
odeling (Wu et al., 2023) typically increases freedom in problem

ormulation in antenna design field (see Fig. 5(a)) while specification
odeling (Liu et al., 2014) fails to decouple expensive costs from
roblem formulation (see Fig. 5(b)). Specifically, response modeling
uilds response model initially and specifications are calculated from
esponse prediction at a very low cost, which makes it possible to
ormulate antenna optimization problems in different stage. On the
ontrary, specification modeling builds specification model directly,
here specification model output is consistent with objectives and

onstraints of optimization problem so that it cannot cope with multiple
ntenna problem formulation.

.6. Motivation of this work

Relation between ML and EC for antenna design is illustrated in
ig. 6 that the two are distinct but cooperative. Some surveys have
rovided detailed introduction of ML (Wu et al., 2020a; Akinsolu et al.,
020; El Misilmani and Naous, 2019; El Misilmani et al., 2020) (mainly
ocus on red circle area without distinguishing between response and
pecification) and EC (Weile and Michielssen, 1997; Hoorfar, 2007;
oudos et al., 2016) (mainly focus on blue shaded area) for antenna
esign. However, existing surveys mainly focus on one or the other
I applications, and have overlooked differences between response

odeling and specification modeling.
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Fig. 4. Illustration of engineering difference between response modeling and specification modeling.
Fig. 5. Difference between response modeling and specification modeling assisted evolutionary antenna optimization.
Fig. 6. Illustration of machine learning and evolutionary computation for antenna
design.
4 
1.7. Main intuition of this work

Different from these surveys, we provide a comprehensive introduc-
tion of both ML and EC for antenna design. Specifically, we review
prominent methods in three parts respectively. In the first part (blue
shaded area), antenna optimization with EC is discussed. According to
the antenna optimization problem formulation, existing work is divided
into three categories (Tables 3, 4), including single objective opti-
mization, multi-objective optimization and constrained optimization. In
the second part (red upper semicircle area), ML-assisted antenna opti-
mization with response modeling is introduced. Methods are grouped
into five categories according to how mapping from design parameters
(features) to response vector (label) is learned (Tables 5, 6). In the
third part (red lower semicircle area), ML-assisted antenna optimization
with specification modeling is presented. Existing work is classified and
discussed according to ML used (Table 7). Finally, challenges and future
directions are discussed.
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Table 2
List of acronyms.

Acronym Definition

ABE Active base element
AEP Active element pattern
AI Artificial intelligence
ANN Artificial neural networks
CHT Constraint-handling technique
CMOP Constrained multiobjective optimization problem
COP Constrained optimization problem
DE Differential evolution
DFT Discrete Fourier transform
EA Evolutionary algorithms
EC Evolutionary computation
EM Electromagnetic
GA Genetic algorithm
GF Gaussian function
GPR Gaussian process regression
IDFT Inverse discrete Fourier transform
KNN K-nearest neighbor
LCB Lower confidence bound
ML Machine learning
MLP Multilayer perceptron
MOEA Multiobjective evolutionary algorithms
MOEA/D Multiobjective evolutionary algorithm based on decomposition
MOP Multiobjective optimization problem
MSE Mean square error
NSGA-II Nondominated sorting genetic algorithm II
PSO Particle swarm optimization
RBF Radial basis function
RMSE Root mean square error
𝑆11 S-parameter of reflection coefficient
SLL Side-lobe level
SOP Single optimization problem
SVR Support vector regression
TF Transfer function
VSWR Voltage standing wave ratio

1.8. Contribution and rest structure of this work

The main contributions of this paper are as follows:

1. We provide a comprehensive summary of both ML and EC
applied to antenna design. We hope that this survey delivers
a systematic understanding of difficulties, methods, application
and challenges of these two AI approaches.

2. Differences between response modeling and specification mod-
eling are highlighted. We present a new taxonomy of antenna
response modeling in terms of how complex mapping relation-
ships with overlong label vector are learned by ML methods.
This is critical for theoretical research of ML methods as well
as specific engineering analyses of complex antenna.

3. We present an in-depth analysis of challenges of AI-empowered
antenna design, and suggest promising research directions.

The rest structure of this paper is organized as follows. Section 2
riefly introduces commonly used ML and EC methods. Section 3
ummarizes evolved antenna in terms of optimization problem for-
ulation. Section 4 provides a new taxonomy of existing response
odeling methods for antenna optimization. Section 5 outlines the
ainstream specification modeling for accelerating antenna optimiza-

ion. Section 6 presents detailed discussions of existing challenges
nd suggests promising future research directions. Finally, Section 7
oncludes the paper. Notably, acronyms used in this paper are listed in
able 2.

. Overview of related artificial intelligence techniques

To make it easier for readers who have less knowledge of AI tech-
iques and make it convenient for following discussion, several most
idely used ML and EC methods in literatures are briefly introduced.
5 
Fig. 7. Illustration of support vector regression.

Due to space limitations, other advanced related methods are not
included in this section, but introduce them directly along with the
corresponding citations.

2.1. Machine learning

Three commonly used ML methods are introduced, including SVR,
GPR and ANN. They have been widely applied to build surrogate model
of EM simulation, such as gain, 𝑆11 and so on.

2.1.1. Support vector regression
SVR is developed from statistical learning theory (Smola and Schölko

2004). Main intuition is illustrated in Fig. 7. To map features into label,
SVR builds a band structure with width of 2𝜀 centered on linear model
𝑓 (𝒙) = 𝝎𝑇 𝒙+ 𝑏. Only when training data falls outside this interval, the
loss is calculated. Its particularity lies in minimizing the 𝜀 insensitive
loss while maximizing the margin, which specializes preference to
smoother ones and avoids overfitting.

To find 𝝎 and 𝑏 of linear model that minimize original problem, it is
normally transformed into equivalent dual problem that slack variables
and Lagrange multipliers are leveraged. To deal with nonlinear prob-
lems, kernel trick is introduced. Firstly, low-dimensional input space is
converted into high-dimensional feature space through feature mapping
𝝓, and the regression can be accurately performed using a linear func-
tion 𝑓 (𝒙) = 𝝎𝑇𝝓(𝒙) + 𝑏. Secondly, Kernel function 𝜅

(

𝒙𝑖,𝒙𝑗
)

is further
introduced to equate the inner product of feature mappings 𝝓(𝒙𝑖)𝑇𝝓(𝒙𝑗 )

ith the analytic function under low-dimensional input space, which
onstitutes dual problems objective and prediction. Gaussian kernel
unction is commonly used. Once training is done, prediction on new
oint 𝒙 is obtained according to Eq. (1).

̂(𝒙) =
𝐾
∑

𝑖=1
(�̂�𝑖 − 𝛼𝑖)𝜅

(

𝒙,𝒙𝑖
)

+ 𝑏 (1)

where prediction consists of a linear combination of kernel functions,
𝛼 and 𝛼 are Lagrangian multipliers optimized from dual problems, 𝐾 is
size of dataset, 𝑏 is derived from 𝛼 and 𝛼.

In the antenna design field, SVR has been introduced to model both
antenna elements (Angiulli et al., 2007) and arrays (Zheng et al., 2011).
Resonant frequency, gain, directivity, and radiation efficiency of slotted
microstrip antennas were modeled with SVR (Roy et al., 2017). More
recently, SVR was applied to a multiresonant unit cell in a geometrical
4-D parallelotope domain in a reflectarray antenna design (Prado et al.,
2023). A search in the Web of Science database shows that there are
165 publications related to SVR and antenna from 2004 to 2024. The
trend has been increasing year by year, and there has been a significant

increase since 2019.
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Fig. 8. An example of Gaussian process regression.

.1.2. Gaussian process regression
GPR is statistical model that regards dataset as a sample of Gaussian

tochastic process, which raises much attraction due to its ability to
rovide uncertainty of prediction (Santner et al., 2003). Maximum
ikelihood estimation is used to explain the existing observations that
aussian joint probability density function adopts of all observations is

aken as likelihood function. Kernel functions or correlation functions
re introduced to measure correlation between observations, where
quared exponential function Eq. (2) is mostly used.

(𝒙,𝒙′ ∣ 𝜽) = exp(−
𝐷
∑

𝑖=1
𝜃𝑖|𝑥𝑖 − 𝑥′𝑖|

2) (2)

where 𝜽 is hyperparameter to be estimated, 𝐷 is size of dimension.
To infer predictive distribution at new point 𝒙, posterior distribution

is obtained by best linear unbiased predictor. Predicted mean Eq. (3)
and variance Eq. (4) are adjusted according to priori and correlation of
existing observations with the new one.

𝑓 (𝒙) = �̂� + 𝒓𝑇𝑪−1(𝒚 − 𝟏�̂�) (3)

̂(𝒙)2 = �̂�2[1 − 𝒓T𝑪−1𝒓 + (1 − 𝟏T𝑪−1𝒓)2

𝟏T𝑪−1𝟏
] (4)

here 𝒚 = (𝑦1, 𝑦2,… , 𝑦𝐾 )𝑇 is observation vector, 𝐾 is size of dataset,
is a 𝐾 × 𝐾 correlation matrix whose (i,j)-element is 𝑐(𝒙𝑖,𝒙𝑗 ), 𝟏 is K-

imensional column vector of ones, 𝒓 = (𝑐(𝒙,𝒙1), 𝑐(𝒙,𝒙2),… , 𝑐(𝒙,𝒙𝐾 ))𝑇 ,
̂ and �̂�2 are estimation of priori mean and variance.

An example of Gaussian process regression is shown in Fig. 8. The
solid line represents the true function, the star points represents the
samples, the dashed line represents the GPR model prediction, and the
shaded area represents the uncertainty of the prediction.

In the antenna design field, GPR has been widely known as surro-
gate model of EM simulation to antenna design optimization (Liu et al.,
2014). It is also used to accurately model the resonant frequencies of
dual-band microstrip antennas (Jacobs, 2014). More recently, GPR was
applied to design non-uniform metasurface circularly polarized patch
antenna (Zeng et al., 2024), where input impedance bandwidth, axial
ratio bandwidth and gain at boresight are considered as the optimizing
targets. A search in the Web of Science database shows that there are
1145 publications related to GPR and antenna from 1983 to 2024. The
trend has been increasing year by year, and there has been a significant
increase since 2013.

2.1.3. Artificial neural networks
ANN are one of the most efficient learners, which are inspired by

the biological brain and very well known in the name of deep learning
nowadays (Goodfellow et al., 2016). An example of three-layer neural
network structure is shown in Fig. 9. Features are presented at the input
6 
Fig. 9. A three-layer neural network structure.

layer and labels are presented at the output layer. The relationship
between them can be expressed as Eq. (5).

𝑓 (𝒙) = 𝑨

( 𝑞
∑

𝑖=1
𝜔𝑖𝐴𝑖(𝒙) + 𝑏𝑖

)

(5)

where hidden layer with size 𝑞 is introduced to connect visible layers
and extract key information from the previous layer by links between
neurons, including linear combination with connection weight 𝝎, bias

and activation function 𝐴(⋅) (rectified linear unit function, sigmoid
unction, etc.). Numerous hidden layers with deep structure have been
roven able to deal with complex non-linear problems.

To train ANN model, mean square error (MSE) function Eq. (6) is
ormally taken as loss function.

(𝝎, 𝒃) = 1
𝐾

𝐾
∑

𝑖=1
(�̂�𝑖 − 𝑦𝑖)2 (6)

where 𝐾 is the size of dataset. Note that size of output layer 𝑀 is equal
or greater than one, which means that ANN can be directly applied to
both response modeling and specification modeling. To minimize loss
function, error backpropagation algorithm, stochastic gradient descent
algorithm and adaptive moment estimation algorithm are commonly
used.

The quintessential example of ANN is multilayer perceptron (MLP),
which is a feedforward neural network composed of multilayers and
has been widely applied to antenna design.

In the antenna design field, ANN has been applied to model antenna
elements (Xiao et al., 2018). It is also used to accurately model far-
field pattern for array synthesis (Cui et al., 2021). More recently, ANN
was applied to pattern synthesis of conformal arrays (Sun et al., 2024).
A search in the Web of Science database shows that there are 3226
publications related to ANN and antenna from 1990 to 2024. The trend
has been increasing year by year, and there has been a significant
increase since 2018.

2.2. Evolutionary computation

EC includes single objective EAs and MOEAs. They have been ap-
plied to deal with different optimization formulation of antenna design
problems.
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2.2.1. Genetic algorithm
GA is inspired from theory of heredity and evolution, which can

solve both continuous and combinatorial optimization problems
through real value and binary encoding (Deb and Beyer, 2001).

It mainly consists of three genetic operations, including environ-
mental selection, chromosome crossover and gene mutation. The se-
lection operator chooses individuals as parents to generate offsprings,
where roulette wheel selection and tournament selection are com-
monly used. The crossover operator exchanges information of parents
solutions to produce child solutions, such as one-point crossover and
simulated binary crossover. The mutation operator makes variation on
each gene with a certain probability, which contributes to maintain
diversity of population.

In the antenna design field, GA has been applied to design thinned
arrays in the early stage (Haupt, 1994). It is also applied to automated
synthesis of a lunar satellite antenna system (Lohn et al., 2015). More
recently, GA was applied to design low sidelobe planar electrically
large sparse array antenna with element number reduction (Zhu et al.,
2024a). A search in the Web of Science database shows that there are
3234 publications related to GA and antenna from 1991 to 2024. The
trend has been increasing year by year, and there has been a significant
increase since 2003 and keep growing.

2.2.2. Particle swarm optimization
PSO (Li et al., 2011) is inspired from birds flock’s foraging behavior.

Each particle 𝒙𝑖 updates its velocity 𝒗𝑖 based on current best positions
information 𝒑𝑖𝑏𝑒𝑠𝑡 found by itself and 𝒈𝑏𝑒𝑠𝑡 by whole swarm, which con-
tribute to exploitation and exploration respectively. Then each particle
updates its position according to updated velocity. The velocity and
position is updated as Eqs. (7) and (8).

𝒗𝑖 = 𝜔𝒗𝑖 + 𝜂1𝑟1(𝒑𝑖𝑏𝑒𝑠𝑡 − 𝒙𝑖) + 𝜂2𝑟2(𝒈𝑏𝑒𝑠𝑡 − 𝒙𝑖) (7)

𝒙𝑖 = 𝒙𝑖 + 𝒗𝑖 (8)

where 𝜔 ∈ (0, 1) is inertia weight, 𝜂1 and 𝜂2 are acceleration constants,
𝑟1 and 𝑟2 are random numbers within [0, 1]. Before next generation,
𝒑𝑖𝑏𝑒𝑠𝑡 and 𝒈𝑏𝑒𝑠𝑡 are updated.

In the antenna design field, PSO has been applied to design ultraw-
ideband planar antenna in the early stage (Lizzi et al., 2007). It is also
applied to synthesis of unequally spaced antenna arrays (Bhattacharya
et al., 2012). More recently, PSO was combined with characteristic
point method to design multiband antennas (Koziel and Pietrenko-
Dabrowska, 2024). A search in the Web of Science database shows that
there are 2006 publications related to PSO and antenna from 2003 to
2024. The trend has been increasing year by year, and there has been
a significant increase since 2008 and keep growing.

2.2.3. Differential evolution
DE uses the differences between solutions for mutation (Das and

Suganthan, 2010). For each target vectors 𝒙𝑖, mutant vector 𝒗𝑖 is first
produced. 𝐷𝐸∕𝑟𝑎𝑛𝑑∕1∕𝑏𝑖𝑛 is as follows.

𝑖 = 𝒙𝑟1 + 𝐹 (𝒙𝑟2 − 𝒙𝑟3) (9)

where 𝑟1, 𝑟2, 𝑟3 are different indexes randomly picked from {1, 2,… ,
𝑁𝑃 }, 𝑁𝑃 is population size, 𝐹 ∈ [0, 2] is scaling factor.

Then trial vector 𝒖𝑖 is obtained by binomial crossover Eq. (10) with
above mutant vector 𝒗𝑖 and target vector 𝒙𝑖.

𝑢𝑖𝑗 =

{

𝑣𝑖𝑗 , 𝑖𝑓 (𝑟𝑎𝑛𝑑 ≤ 𝐶𝑅)|𝑗 = 𝑗𝑟𝑎𝑛𝑑
𝑥𝑖𝑗 , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

(10)

where 𝑗 = 1,… , 𝐷, 𝐷 is size of dimension, 𝐶𝑅 ∈ [0, 1] is crossover rate,
𝑗𝑟𝑎𝑛𝑑 is a randomly selected index from {1,… , 𝐷}.

Finally, greedy criterion is adopted for environmental selection
between target vector and trial vector as Eq. (11).

𝒙𝑖,𝐺+1 =

{

𝒖𝑖,𝐺 if𝑓 (𝒖𝑖,𝐺) ≤ 𝑓 (𝒙𝑖,𝐺) (11)

𝒙𝑖,𝐺 if𝑓 (𝒖𝑖,𝐺) > 𝑓 (𝒙𝑖,𝐺)
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where 𝑓 (⋅) is fitness function, G is the number of current generation.
In the antenna design field, DE has been applied to design ultraw-

ideband planar antenna in the early stage (Lizzi et al., 2007). It is also
applied to synthesis of unequally spaced antenna arrays (Bhattacharya
et al., 2012). More recently, DE was applied to design dielectric res-
onator antenna arrays (Suman et al., 2024). A search in the Web of
Science database shows that there are 776 publications related to DE
and antenna from 1992 to 2024. The trend has been increasing year by
year, and there has been a significant increase since 2010.

2.2.4. Multiobjective evolutionary algorithm

A. NSGA-II
NSGA-II (Deb et al., 2002) is one of most famous domination-

based MOEAs. After generation of child population, elitism scheme is
first introduced to select next parent population that current parent
population and child population are merged and nondominated elitist
are reserved. To sort the combined population, fast nondominated
sorting approach is then introduced and multiple nondominated layers
are thus obtained. Individuals in the same layer are nondominated to
each other, while individuals in the layer with lower rank dominate
those with higher rank. To make a fixed size of next population and
preserve diversity of population in objective space, crowding distance
is introduced to sort the layer that exactly fulfill next parent population,
and top individuals with size of vacancy are selected.

In the antenna design field, NSGA-II has been widely applied to
synthesis of conformal phased array (Yang et al., 2009) and beamform-
ing (Jayaprakasam et al., 2017). More recently, NSGA-II was applied
to design which needs minimizing the beamwidth of the antenna
mainbeam while maximizing the peak-to-sidelobe level and directiv-
ity (Wolff and Nanzer, 2024). A search in the Web of Science database
shows that there are 92 publications related to NSGA-II and antenna
from 2006 to 2024.

B. MOEA/D
MOEA/D (Zhang and Li, 2007) is one of most famous

decomposition-based MOEAs. A multiobjective optimization problem
is first decomposed into multiple scalar subproblems by a set of evenly
distributed weight vectors and mathematical programming methods
(weighted sum approach, Tchebycheff approach and penalty-based
boundary intersection approach, etc.). Then these subproblems are
optimized simultaneously by a population. The size of population is
set to the number of subproblems. Each individual is assigned to
one weight vector, and reproduction and selection are carried out
among solutions associated with neighbor weight vectors. An external
population is introduced in the original version to store nondominated
solutions found so far.

In the antenna design field, MOEA/D has been applied to design a
quad-band double-sided bow-tie antenna (Ding and Wang, 2013) and
Yagi-Uda antennas (Carvalho et al., 2012). More recently, MOEA/D
was applied to design a single-band and dual-band MIMO antenna for
semantic-based mobile system (Suman et al., 2024). A search in the
Web of Science database shows that there are 51 publications related
to MOEA/D and antenna from 2011 to 2024.

3. Antenna optimization with evolutionary computation

3.1. Motivation

Antenna design is normally formulated as optimization problem,
including single-objective optimization problem (SOP), multiobjec-
tive optimization problem (MOP), constrained optimization problem
(COP) and constrained multiobjective optimization problem (CMOP)
(Xu et al., 2020). Different formulations need to be solved by different
types of EAs. A taxonomy of evolved antenna is shown in Fig. 10. To
highlight the differences between different problem formulations and
have a comprehensive view of the application of various EAs, evolved
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Fig. 10. Taxonomy of evolved antenna.

ntennas are divided into three parts and discussed respectively, in-
luding single-objective optimization, multi-objective optimization and
onstrained optimization.

A general CMOP with 𝑚 objectives and 𝑘 constraints is taken as
xample and expressed as Eq. (12).

in 𝒇 (𝒙) = (𝑓1(𝒙),… , 𝑓𝑚(𝒙))

t ∶ 𝒈(𝒙) = (𝑔1(𝒙), 𝑔2(𝒙),… , 𝑔𝑘(𝒙)) ≤ 𝟎
where 𝒙 = (𝑥1, 𝑥2,… , 𝑥𝐷) ∈ 𝐗

𝐗 = {𝒙|𝒍 ≤ 𝒙 ≤ 𝒖}

𝒍 = (𝑙1, 𝑙2,… , 𝑙𝐷), 𝒖 = (𝑢1, 𝑢2,… , 𝑢𝐷),

(12)

where 𝒙 is the solution with size 𝐷, 𝐗 is the solution space, 𝒍 and 𝒖 are
the lower bound and upper bound of the solution space, 𝒇 (⋅) is a vector
of objective functions, 𝒈(⋅) ≤ 𝟎 is a vector of constraints.

Inclusion relationships among SOP, MOP, COP and CMOP are
shown in Fig. 11 that SOP, MOP and COP can be seen as degradation
cases of CMOP that CMOP degrades into MOP when 𝑘 = 0 and into COP
when 𝑚 = 1, MOP degrades into SOP when 𝑚 = 1, and COP degrades
into SOP when 𝑘 = 0.

3.2. Methods

3.2.1. Single-objective optimization
In this case, antenna design is formulated into SOP with objective

number 𝑚 = 1 and constraint number 𝑘 = 0 in Eq. (12). Single-objective
EAs are then applied.

A. Antennas optimized by GA
Haupt (1994) applied GA to optimize SLL of thinned arrays. Hornby

et al. (2011) applied GA to optimize gain of wire antenna for NASA’s
space technology 5 mission. GA has also been integrated in automated
design system for NASA’s LADEE mission (Lohn et al., 2015). GA has
also been applied to design monopole antenna (Altshuler and Linden,
1997), Yagi-Uda antenna (Jones and Joines, 1997) and miniaturized
meander-line antennas (Marrocco et al., 2002).

B. Antennas optimized by PSO
Lizzi et al. (2007) applied PSO to optimize return loss of a spline-

shaped ultrawideband antenna. Goudos et al. (2010) applied com-
prehensive learning PSO to synthesize unequally spaced linear array,
where SLL, beamwidth and null are formulated into single objec-

tive. Bhattacharya et al. (2012) applied position mutated hierarchical

8 
Fig. 11. Relation among different optimization problems.

PSO to synthesize unequally spaced linear array. Li et al. (2013) applied
PSO with neighborhood redispatch technique to optimize VSWR of an
ubtrawideband antenna.

C. Antennas optimized by DE
Deb et al. (2011) applied DE to optimize reflection coefficient

of aperture coupled microstrip antennas. Montgomery et al. (2011)
extended DE to design radio frequency identification antennas with
discrete variable. Ma et al. (2019) applied DE to synthesize irregular
arrays and achieved excellent beam scanning ability.

D. Antennas optimized by other single-objective EAs
In addition to the above three most commonly used methods,

several other evolutionary optimization methods have also been ap-
plied. For example, genetic programming was applied to design wire
antenna (Lohn et al., 2005). Evolutionary programming was applied
to design broadband parasitic wire arrays (Casula et al., 2011). Gre-
gory et al. (2011) applied covariance matrix adaptation evolutionary
strategy to design wideband stacked-patch antenna and ultrawideband
array.

Multiple EAs have been hybridized to design antenna. Li et al.
(2010) developed a hybrid EA of GA and PSO to synthesize conformal
array pattern. Yang et al. (2013) developed a hybrid EA of artificial bee
colony and DE to synthesize time-modulated arrays pattern. Grimaccia
et al. (2007) developed a hybrid EA that combined GA and PSO to
generate new population to optimize phased array.

EAs and mathematical methods have also been hybridized to design
antenna. Yang et al. (2017) combined convex programming and DE to
synthesize heterogeneous arrays. Cui et al. (2017) combined GA and
modified iterative Fourier transform to synthesize thinned array. Gong
et al. (2023) combined DE and sequential least squares programming
to synthesize linear arrays.

3.2.2. Multi-objective optimization
In this case, antenna design is formulated into MOP with objective

number 𝑚 > 1 and constraint number 𝑘 = 0 in Eq. (12). MOEAs are
then applied.

A. Antennas optimized by NSGA-II
Kuwahara (2005) applied Pareto GA to optimize Yagi–Uda antenna,

where gain, SLL, and VSWR are set as objectives. Goudos et al. (2013)
applied NSGA-II with local search to the synthesis of uniform and
nonuniform subarrayed linear arrays, where objectives include direc-
tivity maximization and SLL minimization. Wang et al. (2019) applied
NSGA-II to design a multiband pixel patch antenna, where gain and
bandwidth are set as objectives. Yuan et al. (2012) applied NSGA-II
to design a parasitic layer-based reconfigurable antenna, where three
objectives are gain, bandwidth and axial ratio. Improved NSGA-II has
also been applied to array synthesis (Jayaprakasam et al., 2017; Yang
et al., 2009), where direction of the beam peak, SLL and beamwidth

are considered.
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B. Antennas optimized by MOEA/D
Liu et al. (2012) applied multiple-single-objective Pareto sampling

algorithm to optimize linear array, where five objectives are formu-
lated. Carvalho et al. (2012) applied MOEA/D to design broadband
optimal Yagi-Uda antennas and three objectives are directivity, VSWR
and front-to-back ratio. Ding and Wang (2013) applied a modified
MOEA/D to design a tri-band bow-tie antenna, where return loss in
each band is set as objective respectively. Lu et al. (2017) applied
MOEA/D with genetic operator to optimize isolation of MIMO anten-
nas, and further applied MOEA/D-DE to optimize return loss. Li et al.
(2019) developed a new MOEA named MOEA/D-GPSO by embedding
PSO into MOEA/D to optimize compact log-periodic dipole array,
where objectives are VSWR, gain and total length. Li et al. (2020)
proposed an improved MOEA named MOEA/D-M by integrating PSO
and binary PSO into MOEA/D to optimize isolation and return loss
of compact MIMO antenna, which deals with continuous and discrete
parameters simultaneously.

3.2.3. Constrained optimization
In this case, antenna design is formulated into COP or CMOP that

constraint number 𝑘 > 0 in Eq. (12). EAs with constraint-handling
echnique are then applied.

. Handling constraints via penalty function
Penalty function method incorporates a penalty term into the objec-

ive function via penalty value to penalize the violation of constraints.
Jamnejad and Hoorfar (2004) applied evolutionary programming

o design corrugated circular horn, where pattern is set as objective
unction and penalized by constraints of return loss, beam width,
attern circularity and low cross-polarization.

. Handling constraints via feasibility rule
The feasibility rule method ensures the generation of feasible so-

utions since solutions with smaller violation survive. Objective value
ecomes the second evaluation criterion.

Cai et al. (2008) combined this method with GA to design an X-
and antenna for NASA’s space technology 5 spacecraft, where gain is
et as objectives and VSWR at the transmit and receive frequencies as
onstraints. Liu et al. (2013) combined this method with DE to design
wideband twisted dipole antenna, where objective and constraint are

ormulated as return loss.

. Handling constraints via dynamic multiobjective method
Dynamic multiobjective method convert constraint violation to an

dditional objective and MOEA is applied, which is indicated as DC-
OEA. To have a better balance between objective and constraint,

iolation is dynamically reduced.
Dong et al. (2014) applied this method to design a linear sparse

rrays, where objectives and constraints are formulated with SLL,
eamwidth and spatial aperture. Jiang et al. (2016) applied this method
o design a wide-band helical antenna, where right-hand circular polar-
zation gain and height of the antenna are set as two objectives, gain,
SWR and axial ratio are set as constraints.

.3. Summary

To summarize applications of EC for antenna design, we investigate
ypical research of evolved antenna in Table 3 and make a comprehen-
ive summary in terms of antenna type, problem and algorithm.

In addition to the above applications, EC has also been applied
n some other special cases involved in specific engineering practice
parallelization, robustness, eg.). For example, PSO for antenna design
s implemented on parallel clusters to reduce computational time (Jin
nd Rahmat-Samii, 2005). To obtain robust antenna design, variance
f gain, VSWR and axial ratio over frequency band is optimized (Hu
t al., 2019). To achieve reliable antenna design, worst-case sensi-
ivity analysis (Zhang and Rahmat-Samii, 2017) and the influence of
ncertainties (Steiner et al., 2004) have also been investigated.
9 
3.4. Remarks

Based on above discussion, we comment on highlights and limita-
tions of different antenna problem formulations in Table 4.

4. Machine learning assisted antenna optimization with response
modeling

4.1. Motivation

Response modeling have raised much attention in literatures. To
highlight their differences to specification modeling and present essen-
tial difficulties of the problem, we categorize existing methods that how
ML methods are introduced to learn mapping 𝑓 from antenna design
parameters 𝒙 to response vector 𝑹 as Eq. (13) with given training set
{(𝒙1,𝑹1), (𝒙2,𝑹2),… , (𝒙𝐾 ,𝑹𝐾 )}.

𝑓
𝒙 ⟶ 𝑹

(𝑥1, 𝑥2,… , 𝑥𝐷)𝑇 (𝑅1, 𝑅2,… , 𝑅𝑀 )𝑇
(13)

where 𝐷 is size of features, 𝑀 is size of label (sampling granularity of
frequency for 𝑆11 and angular for radiation pattern, eg.), 𝐾 is size of
dataset. Note that 𝑀 is larger than one.

4.2. Methods

4.2.1. Direct modeling
The simplest way is to learn mapping 𝑓 in Eq. (13) with existing

ML methods directly. To be specific, one is to build multiple single-
output machine learning models for each dimension response value,
and the other is to build a multi-output machine learning model for all
dimension response values.

A. Single-output model
In this mode, trainset is split into 𝑀 subsets with scalar label, and

single-output ML methods are directly applied. Total 𝑀 models are
fitted that 𝒙 is set as feature and each dimension of response vector
𝑹 is set as label by turns.

Koziel et al. (2012) applied co-kriging model to predict 𝑆11 re-
sponse. As pointed out, model construction typically takes several
minutes for 100 frequency points case. Chen et al. (2017) applied
kriging model (similar to GPR) to predict 𝑆11 curve magnitude of E-
shaped patch antenna. Frequency band 4.5 GHz∼6.5 GHz is represented
with 40 discreted frequency points and kriging model is fitted on each
one. They further applied response model to optimize two resonant
frequencies that maximum of 𝑆11 at {5 GHz, 5.5 GHz} is formulated
as objective and optimized by DE. Prado et al. (2019) applied SVR
to predict reflection coefficients of a very large shaped-beam reflec-
tarray for direct broadcast satellite, where real and imaginary parts
are estimated separately, 5 frequency and 52 angles of incidence are
considered. They extended their work to predict the electromagnetic
response of the constituent unit cell for a direct layout optimization
of the antenna (Prado et al., 2022), where 64 angles of incidence at
a single frequency is considered and it takes 71 days to obtain 529
samples.

B. Multi-output model
In this mode, multi-output ML methods (particularly ANN with

multiple output layer nodes) are directly applied. Only one model is
fitted that 𝒙 is set as input and response vector 𝑹 is set as output.

Cui et al. (2021) applied ANN for linear array beampattern synthesis
and decoder ANN is trained as array analyzer, where excitation serve
as model input and far field pattern serve as output. Experiments
are done on three array cases, including ideal array and actual array
with elements number varying from 32 to 149. Note that output layer
size of 3602 is so large that model complexity increases dramatically
and at least 5000 samples is required. They extended this method to
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Table 3
Summary of various evolved antennas.

References Antenna type Problem Algorithm

Formulation Objectives Constraints

Haupt (1994) Thinned arrays SOP SLL – GA

Hornby et al.
(2011)

X-band wire antenna SOP Gain – GA

Jones and Joines
(1997)

Yagi-Uda antenna array SOP Combination of gain,
impedance, SLL

– GA

Lizzi et al.
(2007)

Spline-shaped ultrawideband
antenna

SOP Combination of 𝑆11, 𝑆21,
group delay

– PSO

Goudos et al.
(2010)

Unequally spaced linear array SOP Combination of SLL,
beamwidth, null

– CLPSO

Li et al. (2013) Coplanar waveguide fed
ultrawideband antenna

SOP VSWR – NR-PSO

Deb et al. (2011) Aperture coupled microstrip
antennas

SOP Reflection coefficient – DE

Montgomery
et al. (2011)

Radio frequency identification
antenna

SOP Combination of efficiency,
resonant frequency

– DE

Ma et al. (2019) 4-D irregular antenna array SOP Combination of SLL,
directivity, efficiency

– DE

Yuan et al.
(2012)

Parasitic layer-based
reconfigurable antenna

MOP Gain, bandwidth, axial ratio – NSGA-II

Goudos et al.
(2013)

Subarrayed linear arrays MOP Directivity, SLL – NSGA-II

Yang et al.
(2009)

Conformal phased array MOP Beam peak direction, SLL,
beamwidth

– Improve NSGA-II

Carvalho et al.
(2012)

Yagi-Uda antennas MOP Directivity, VSWR,
front-to-back ratio

– MOEA/D

Ding and Wang
(2013)

Tri-band bow-tie antenna MOP 𝑆11 in three band – Modified MOEA/D

Li et al. (2019) Compact log-periodic dipole
array

MOP VSWR, gain, total length – MOEA/D-GPSO

Jamnejad and
Hoorfar (2004)

Corrugated horn antennas COP Pattern Return loss, beamwidth,
pattern circularity,
cross-polarization

Evolutionary
programming with
penalty function

Cai et al. (2008) X-band wire antenna COP Gain VSWR at transmit and receive
frequency

GA with feasibility rule

Liu et al. (2013) Wideband twisted dipole
antenna

COP Return loss Return loss DE with feasibility rule

Dong et al.
(2014)

Linear sparse array CMOP SLL, beamwidth, spatial
aperture

SLL, beamwidth, spatial
aperture

DCMOEA

Jiang et al.
(2016)

Wideband helical antenna CMOP Right-hand circular
polarization gain, height

Gain, VSWR, axial ratio DCMOEA

Xu et al. (2020) Linear array CMOP Beamwidth, SLL, null Beamwidth, null DCMOEA
Table 4
Comments on the highlights and limitations of different antenna problem formulation.

Methods Highlights Limitations

SOP (1) Relatively simple. (2) A large number of algorithms
for solving SOP.

(1) Could not show the trade-off between objectives. (2)
Probably fail to satisfy some constraints. (3) Could not
provide multiple optimal solutions. (4) The optimal
solution probably does not have practical significance.

COP (1) Fully meet multiple constraints. (1) Could not show the trade-off between objectives. (2)
Could not provide multiple optimal solutions.

MOP (1) Well express multiple objectives. (2) Multiple optimal
solutions.

(1) Probably fail to satisfy some constraints.

CMOP (1) Fully express multiple objectives. (2) Ensure multiple
constraints. (3) A mass of well-representative
Pareto-optima.

(1) Few algorithms for addressing CMOP.
10 



H. Zou et al.

a

Engineering Applications of Artiϧcial Intelligence 138 (2024) 109381 
synthesis of pattern-reconfigurable array (Cui et al., 2022) and time-
modulated arrays (Hei et al., 2023). Gong and Xiao (2019) proposed
to predict active element pattern (AEP) by ANN so that mutual cou-
pling effects are considered for synthesis. Model has 2896 outputs and
thousands of samples are required. They extended this work to deal
with 𝑆 parameters simultaneously (Gong et al., 2020) and planar array
cases (Gong et al., 2021). Jiao et al. (2023) optimized mmWave array
by three stages, where ANN is applied to predict 𝑆 parameters curve
and radiation pattern at all frequency points respectively.

4.2.2. Parametric modeling
Parametric modeling methods transform label vector 𝑹 to low

dimension via a parameterized function with much lower dimension
parameter vector 𝑹𝑳 (𝑹𝑳 is transformed parameters and is determined
by the vector 𝑹), establish model with 𝑹𝑳 as new label. When making
predictions on new samples, restore �̂� with predicted 𝑹𝑳 by the 𝑹𝑳
parameterized function.

A. Transfer function based parametric modeling
Transfer function (TF) is from circuit theory as Eq. (14).

𝐻(𝑠) =
𝑄
∑

𝑖=1

𝑟𝑖
𝑠 − 𝑝𝑖

(14)

where 𝑝𝑖 is the pole coefficient that contributes to represent a peak, 𝑟𝑖
is the residue coefficients, 𝑠 represents frequency, 𝑄 is the order that
corresponds to the number of peaks. To parametrically model 𝑹 with
TF, we take 𝑆11 response as example as follows.

Step 1: For each response 𝑹 = (𝑆11𝑓𝑟𝑒𝑞1 , 𝑆11𝑓𝑟𝑒𝑞2 ,… , 𝑆11𝑓𝑟𝑒𝑞𝑀 )𝑇 ,
reorganize the indexes and corresponding values in 𝑹 into pairs, and
we get dataset {(𝑓𝑟𝑒𝑞𝑖, 𝑆11𝑓𝑟𝑒𝑞𝑖 )}, 𝑖 = 1,… ,𝑀 .

Step 2: Use this dataset to fit TF until parameters 𝑝𝑖 and 𝑟𝑖 are
identified, and we obtain 𝑹𝑳 = (𝑝1,… , 𝑝𝑄, 𝑟1,… , 𝑟𝑄)𝑇 with size of 2𝑄
far less than 𝑀 .

Step 3: Based on transformed training set {(𝒙1,𝑹𝑳1), (𝒙2,𝑹𝑳2),… ,
(𝒙𝐾 ,𝑹𝑳𝐾 )}, train ML model.

Step 4: Use ML model in Step 3 to predict 𝑹𝑳 at new points 𝒙∗.
Step 5: For each frequency 𝑠, calculate Eq. (14) with 𝑹𝑳, and we

obtain �̂� at 𝒙∗.
Following rational form of TF as Eq. (15) has also been used Gus-

tavsen and Semlyen (1999).

𝐻(𝑠) =
∑𝑃
𝑖=0 𝑎𝑖𝑠

𝑖

1 +
∑𝑄
𝑖=1 𝑏𝑖𝑠

𝑖
(15)

where 𝑎𝑖 and 𝑏𝑖 are parameters to be determined, corresponding 𝑹𝑳 =
(𝑎1,… , 𝑎𝑃 , 𝑏1,… , 𝑏𝑄)𝑇 with size of 𝑃 + 𝑄. Note that parameterization
process needs to be carried out independently for each sample label and
the order of the TF needs to be predefined.

Cao et al. (2009) first combined ANN and TF to model response.
Feng et al. (2015) developed a pole-residue tracking technique to solve
order-changing problem that some predefined order is not sufficient
to obtain good fitting consistency and transformed parameters 𝑹𝑳
have different sizes. Xiao et al. (2017) applied TF to parameterize
𝑆11 response and then used ANN to learn TF coefficients. As for
order-changing problem, support vector machine was applied to clas-
sify samples according to TF orders and ANN model was built for
each cluster respectively. They extended this work to multiparameter
modeling (Xiao et al., 2018), where gain and radiation pattern were
considered and frequency 𝑠 was replaced with angle 𝜃 in the param-
eterization of the radiation pattern. They also extended their work to
deal with finite periodic arrays (Xiao et al., 2019), thinned arrays (Xiao
et al., 2020) and AEP modeling (Hong et al., 2020, 2022). Chen et al.
(2020) applied TF and ANN to model AEP of five-element unequally
spaced linear array. Ma et al. (2023) applied TF and ANN to model
reflection coefficients of frequency selective structure. Luo et al. (2020)
11 
combined convolutional neural networks and TF to predict response,
where antenna structure was replaced by antenna image.

B. Gaussian function based parametric modeling
Gaussian function (GF) based parametric modeling is same as TF

based parametric modeling, only different that Gaussian function as
Eq. (16) is used.

𝐺(𝑠) =
𝑄
∑

𝑖=1
𝑐𝑖𝑒

− (𝑠−𝑏𝑖 )2
𝑎𝑖 + 𝑑 (16)

where 𝑎𝑖, 𝑏𝑖, 𝑐𝑖 and 𝑑 are coefficients, 𝑠 is frequency, 𝑄 is number
of basis. Consequently, 𝑹𝑳 = (𝑎1,… , 𝑎𝑄, 𝑏1,… , 𝑏𝑄, 𝑐1,… , 𝑐𝑄, 𝑑)𝑇 with
size of 3𝑄 + 1. Gaussian function is simple and relatively insensitive
to parameter errors. Note that 𝑄 is usually taken as the number of
peaks of the response to be fitted, and its setting highly depends on
the experience of the engineers.

Kim et al. (2007) applied GF and MLP to model the impedance of
wideband antenna. 𝑄 is set to six that impedance curve has six hills
nd total 19 parameters form 𝑹𝑳. They further applied this model to

optimize average VSWR over frequency range and saved much time.

C. Discrete Fourier transform based parametric modeling
The reason why discrete Fourier transform (DFT) is used to para-

metrically model response is as follows. Since array factor and the
inverse discrete Fourier transform (IDFT) have a very high similarity
in the form of the formulas, it is assumed that element excitations of
a periodic spacing array can be obtained by DFT of corresponding AF,
which is described as Eq. (17).

𝐴𝐹 (𝑛) =
𝑁𝐸−1
∑

𝑘=0
𝑎(𝑘)𝑒𝑗𝑘𝑛, 𝑛 = 2𝜋

𝜆
𝑑 sin𝜓 (17)

where 𝑁𝐸 is the number of elements, 𝑎(𝑘) is the 𝑘th excitation coef-
ficient, 𝑑 is the element spacing and 𝜓 is the inclination angle to the
normal of the array.

Based on above theory assumptions, to model radiation pattern,
procedures are as follows.

Step 1: For each response 𝑹, a DFT is performed and we obtain
𝑹𝑳 = (𝑎0, 𝑎1,… , 𝑎𝑁𝐸−1)𝑇 that have the physical meaning of excitation.

Step 2: Based on transformed training set {(𝒙1,𝑹𝑳1), (𝒙2,𝑹𝑳2),… ,
(𝒙𝐾 ,𝑹𝑳𝐾 )}, train ML model.

Step 3: Use ML model in Step 2 to predict 𝑹𝑳 at new points 𝒙∗.
Step 4: For each 𝑹𝑳, perform IDFT as Eq. (17), and we obtain �̂� at

𝒙∗.
Note that 𝑁𝐸 is predefined according that reconstruction error

between simulated and calculated results is below a certain threshold.
Wu et al. (2023) combined this method and kriging model to predict

radiation pattern. They also integrated this parametric model into
surrogate-assisted optimization framework with NSGA-II as optimizer.

4.2.3. Additional feature modeling
Extract the index in the response 𝑹 as an additional feature (usually

frequency for 𝑆11 and angle for radiation pattern), build ML models
with additional feature so that ‘‘curse of dimensionality’’ in label is
avoided. Take 𝑆11 as example, specific steps are as follows. Note that
frequency is replaced with angle for radiation pattern modeling.

Step 1: For each sample (𝒙,𝑹) with 𝑹 = (𝑆11𝑓𝑟𝑒𝑞1 , 𝑆11𝑓𝑟𝑒𝑞2 ,… ,
𝑆11𝑓𝑟𝑒𝑞𝑀 )𝑇 , take frequency as additional feature and corresponding
response value as label, and we obtain M new samples with scalar label
{((𝒙, 𝑓𝑟𝑒𝑞1), 𝑆11𝑓𝑟𝑒𝑞1 ),… , ((𝒙, 𝑓𝑟𝑒𝑞𝑀 ), 𝑆11𝑓𝑟𝑒𝑞𝑀 )}.

Step 2: Based on transformed training set with size of 𝐾 × 𝑀
{((𝒙𝟏, 𝑓𝑟𝑒𝑞1), 𝑆11𝑓𝑟𝑒𝑞1 ),… , ((𝒙𝟏, 𝑓𝑟𝑒𝑞𝑀 ), 𝑆11𝑓𝑟𝑒𝑞𝑀 ),… , ((𝒙𝑲 , 𝑓𝑟𝑒𝑞1),
𝑆11𝑓𝑟𝑒𝑞1 ),… , ((𝒙𝑲 , 𝑓𝑟𝑒𝑞𝑀 ), 𝑆11𝑓𝑟𝑒𝑞𝑀 )}, train ML model.

Step 3: For each frequency point, together with new points 𝒙∗, use
̂
ML model in Step 2 to get 𝑀 predictions and thus obtain 𝑹.
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Angiulli et al. (2007) applied SVR to model impedance, reactance,
magnitude and phase curves of microwave devices and antennas. Fre-
quency and angle were taken as additional features respectively and re-
sults showed that SVR achieved better root mean square errors (RMSE)
than MLP. Jacobs (2012) applied Bayesian SVR to model 𝑆11 re-
ponse and obtained better RMSE than SVR. They also incorporated
ultifidelity modeling that support vectors from coarse data were

imulated with fine discretization and used to build fine model so that
imulation cost is reduced (Jacobs et al., 2012). Wu et al. (2019a)
roposed ML-assisted optimization with additional feature to optimize
ntenna parameters, where frequency is added as feature to train GPR
odel and maximum of lower confidence bound (LCB) among all

requency points is set as fitness. They extended their work to design
ideband millimeter-wave horizontally polarized omnidirectional an-

enna (Gong et al., 2022), broadband reflectarray antenna (Cao et al.,
019), mmWave array (Wu et al., 2021b).

Wu et al. (2021c,a) proposed active base element (ABE) modeling
or array synthesis. By modeling AEP of each element with adjacent
lement spacings as feature, frequency and angle as additional features,
BE model is obtained. Note that size of transformed training set is

urther multiplied by the number of elements since element is basic
odeling object. To alleviate model computational cost with overabun-
ant training set, virtual subarray expansion is introduced (Wu et al.,
022b). They also extended their work to design planar array (Wu
t al., 2022a) and series-fed microstrip arrays (Chen et al., 2023).

Additional feature modeling is also incorporated with multifidelity
odeling for data enhancement. The mapping from low fidelity data

o high fidelity data was learned. Jacobs and Koziel (2013) proposed
wo stage modeling framework. The first step is to use GPR to learn the
apping relationship between the low-fidelity and high-fidelity 𝑆11 to

xpand the high-fidelity data set. The second step is to use the expanded
ata set to build GPR to predict and optimize the response. Wu et al.
2019b, 2020b) applied multioutput GPR to further learn correlations
etween 𝑆11 and gain.

.2.4. K-nearest neighbor based modeling
K-nearest neighbor (KNN) is a neighbor-based ML method. The

alue of the new data is determined by how much it resembles the
raining set. To be specific, neighbors of new point are identified by
istance (such as Manhattan distance, Euclidean distance and Cheby-
hev distance), and average or weighted average of neighbors label are
et as prediction. To predict �̂� at new point 𝒙∗ with KNN, the neighbors
re averaged on each dimension of 𝑹 to obtain the prediction for each
imension.

Yang et al. (2023a) combined KNN and ABE to predict the actual
attern of the linear arrays. Adjacent element spacings are taken as
eatures, and AEP is taken as labels predicted by Eqs. (18) and (19).

𝑔𝑛(𝜃) =
1
𝐾𝑛

∑

𝑑𝑖∈N
𝑔𝑗 (𝜃) (18)

𝑔𝑛(𝜃) =
∑

d̄𝑖∈N

𝑙−1𝑖
∑𝐾𝑛
𝑖=1(𝑙

−1
𝑖 )

𝑔𝑗 (𝜃) (19)

where 𝜃 is radiation angle, N is neighbor set with size of 𝐾𝑛, 𝑙𝑖 is
istance to the neighbor, 𝑑𝑖 is features and 𝑔𝑛 is AEP of 𝑛th element.
hey further applied this model to synthesis array with varied element
umbers.

.2.5. B-spline based modeling
Sample 𝑹 uniformly with reduced size, build ML models with

ampled response and interpolate predictions with B-spline.
Sharma et al. (2022) combined B-spline and GPR to model gain

erformance in the principal plane of a monopole antenna. Dielectric
onstant values are taken as features. They further applied this model
o synthesis single-beam and multiple-beam patterns.
12 
4.3. Applications

To apply these response modeling methods to assist optimization
(data-driven EAs), they have their own advantages and limitations. For
linear array beampattern synthesis, Cui et al. (2021) applied ANN to
predict far-field pattern and optimized design pattern to be consistent
with the desired pattern. Real-time array synthesis can be potentially
achieved since model was pretrained offline. But it suffers that a large
number of training samples are required to promise model quality since
ANN has 3602 output nodes with masses of model parameters. To
optimize 𝑆11, gain and bandwidth of Fabry–Perot resonator antenna in
a multiobjective manner, Xiao et al. (2018) applied TF to parameterize
three response and used ANN to learn mapping from design parameters
to TF coefficients. A small number of samples are able to make good
predictions since size of TF coefficients is much smaller than response
and ANN has low complexity. But it suffers that it is hard to prepare
dataset for training. Wu et al. (2021a) applied GPR to predict pattern
for array synthesis. Dataset with vectorized label was first transformed
into scalar label by adding angle feature. It makes it possible to op-
timize pattern with much fewer initial samples, but the size of the
converted dataset is too large, which brings challenges to GPR training.

To have a more intuitive view of engineering application, we in-
vestigate typical research of response modeling in Table 5 and make
a comprehensive comparison in terms of model and application in
optimization. The Model enumerates dataset size, ML methods used,
the features and labels of antenna instance. Application enumerates an-
tenna type and antenna optimization based on corresponding response
model, where online indicates that new data is simulated and model
is updated, offline indicates that optimization is only performed on
response model.

4.4. Remarks

Based on above discussion, we comment on highlights and limita-
tions of different response modeling methods in Table 6.

5. Machine learning assisted antenna optimization with specifica-
tion modeling

5.1. Motivation

ML methods are able to overcome expensive cost and nonlinear
difficulties and widely used to model antenna specification, which
normally predicts objectives and constraints of antenna optimization
problems before full-wave simulation. Specification modeling mainly
accelerates and guides optimization, which has been deeply integrated
with EC and other mathematical optimizers. To outline ML-assisted
optimization and distinguish from antenna response modeling, specifi-
cation modeling for antenna optimization is reviewed according to ML
method used.

5.2. Methods

5.2.1. SVR assisted specification modeling for antenna optimization
Ayestaran and Las-Heras (2005) applied SVR to array synthesis,

where relationship between array feed values and the radiated field is
learned. Zheng et al. (2011) applied SVR to design rectangular patch
antenna, where SVR is used to predict resonant frequency, gain and
VSWR. Roy et al. (2017) applied SVR to design slotted microstrip
antennas, where resonant frequency, gain, directivity and radiation
efficiency is predicted. SVR has also been applied to model reflectarray
antennas (Prado et al., 2018a,b, 2023).

5.2.2. GPR assisted specification modeling for antenna optimization
Liu et al. (2014) proposed surrogate model assisted differential
evolution for antenna synthesis (SADEA), where GPR is combined with
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Table 5
Details of various response modeling methods.

References Method Model Application in optimization

Dataset size ML Features Label Antenna type Optimization
mode

Chen et al.
(2017)

Direct modeling 60 Kriging Geometry 𝑆11 E-shaped patch antenna Online

Cui et al. (2021) Direct modeling 5000 ANN Array excitations Far-field pattern Ideal or actual array Offline

Gong et al.
(2020)

Direct modeling 600 MLP Array distribution AEP/S parameters Patch array Offline

Jiao et al.
(2023)

Direct modeling 550 MLP Geometry, array
distribution

Radiation pattern/S
parameters

mmWave array Online

Xiao et al.
(2018)

Parametric modeling
(TF)

64 ANN Geometry 𝑆11/Gain/Radiation
pattern

Fabry–Perot resonator
antenna

Offline

Xiao et al.
(2019)

Parametric modeling
(TF)

49 ANN Geometry 𝑆11/Pattern Finite periodic arrays Offline

Chen et al.
(2020)

Parametric modeling
(TF)

286 ANN Array distribution AEP Five-element unequally
spaced array

–

Kim et al.
(2007)

Parametric modeling
(GF)

135 MLP Geometry Input resistance Loop-based broadband
antenna

Online

Wu et al. (2023) Parametric modeling
(DFT)

17 Kriging Geometry 𝑆11/Gain Bandwidth-enhanced patch
antenna

Online

Angiulli et al.
(2007)

Additional feature
modeling

4000 SVR Geometry, frequency Resonant input
impedance

Printed microstrip antenna –

Wu et al.
(2021a)

Additional feature
modeling

28 960 GPR Geometry,
frequency, angle

AEP Various array Online

Jacobs and
Koziel (2013)

Additional feature
modeling

91 × 3 GPR Geometry, frequency 𝑆11 Slot dipole antenna Online

Wu et al.
(2020b)

Additional feature
modeling

15 × 41 GPR Geometry,
frequency, angle

𝑆11/Gain Single-band microstrip
antenna

Online

Yang et al.
(2023a)

KNN based
modeling

300 × 17 × 2 KNN Array distribution AEP 17-element array Online

Sharma et al.
(2022)

B-spline based
modeling

1050 GPR Dielectric constant
values

Gain pattern Dielectrics around
monopole antenna

Offline

Online: new data is sampled and model is updated. Offline: No data is sampled.
–: Not available.
Table 6
Comments on the highlights and limitations of different response modeling methods.

Methods Highlights Limitations

Direct modeling (1) Direct modeling is very intuitive and easy to implement with
ML methods. (2) Little knowledge of antenna design is required.

(1) For single-output model, quite a few models are built to
predict each dimension of 𝑹 so that model cost is excessively
high and model errors can be accumulated. (2) For
multiple-output model, model complexity becomes excessively
high and masses of data are required, which increases the cost
of data acquisition and model training.

Parametric modeling (1) Since transformed parameters have shorter vector length,
good enough generalization performance can be obtained by
training with a small amount of data. (2) Predicted response is
less insensitive to overfitting or underfitting since predictions
are made on transformed parameters.

(1) It is hard to predefine order of TF, basis number of GF and
parameters of DFT. Considerable prior knowledge or antenna
knowledge is required. (2) Order-changing problem is further
involved that the length of transformed parameter vectors for
each sample is not same, which brings challenges to ML
methods.

Additional feature modeling (1) Physical meanings of response vector index are fully
exploited and the difficulty of ‘‘curse of dimensionality’’ is
overcome. (2) It can provide sufficient data for ML methods
based on a small number of samples.

(1) The converted data set is overabundant that model training
is extremely expensive, especially GPR. (2) The converted data
set has single diversity in original features and redundant in
additional features.

K-nearest neighbor based modeling (1) KNN has high computational efficiency with limited data.
(2) Little knowledge of antenna design is required.

(1) Relatively large data set is required to obtain reliable
predictions. (2) It is sensitive to the method of distance
calculation and number of neighbors.

B-spline based modeling (1) Model cost is directly reduced with sampled response. (2)
Little knowledge of antenna design is required.

(1) There is much loss of information on raw data. (2) It is hard
to deal with highly nonlinear problems.
LCB to precreen DE population. A series of SADEA have been developed
later. Radial basis function (RBF) with trust-region method for local
search is integrated into SADEA (Liu and Koziel, 2015). A self-adaptive
GPR modeling method with RBF local optimization was introduced
to reduce training cost (Liu et al., 2021). SADEA was extended to
multifidelity antenna optimization (Liu et al., 2017) and parallel opti-
13 
mization (Akinsolu et al., 2019). Self-adaptive Bayesian neural network
is introduced to replace GPR (Liu et al., 2022).

Jacobs (2014) applied GPR to model the resonant frequency of dual-
band microstrip antenna. Wang et al. (2021) applied GPR and GA to op-
timize dual-polarized base station antenna. Chen et al. (2022) proposed
a multibranch ML assisted optimization method that GPR is combined
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Table 7
Summary of ML-assisted specification modeling for antenna optimization.

References Antenna type ML algorithm Optimization algorithm

Zheng et al. (2011) Rectangular patch antenna SVR –
Liu et al. (2014) Inter-chip wireless antenna, two-dimensional array GPR SADEA
Liu and Koziel (2015) Microstrip array GPR, RBF SMAS-L
Liu et al. (2021) Base station antenna GPR TR-SADEA
Liu et al. (2017) Yagi–Uda antenna, linear microstrip antenna array GPR SADEA-II
Akinsolu et al. (2019) Hybrid dielectric resonator antenna GPR PSADEA
Wang et al. (2021) Dual-polarized base station antenna GPR GA
Zhou et al. (2020) Asymmetric coplanar strip-fed monopole antenna GPR Trust-region method
Zhang et al. (2020) Dipole antenna, cavity-backed slot antenna GPR SA-QNEGO
Dong et al. (2017) Planar multiband antenna Kriging M-MOEA/D
Budak et al. (2021) Analog circuit ANN DE
Tak et al. (2018) W-band slotted waveguide array MLP –
Papathanasopoulos et al. (2023) Yagi-Uda antenna, dual-band slotted patch antenna ANN ONN
Fu et al. (2022) Slot antenna, linear antenna array Kriging, RBF SAPSO-mixP
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with multiple constants LCB for parallel antenna optimization. Zhou
et al. (2020) combined GPR and trust-region method to parallel an-
tenna optimization. Zhang et al. (2020) proposed a surrogate-assisted
quasi-Newton enhanced global optimization algorithm, where GPR is
trained with low fidelity data and optimized by Quasi-Newton en-
hanced DE. Koziel et al. (2014) built kriging model with low-fidelity
data and co-kriging model with multi-fidelity data to assist multiobjec-
tive design of ultrawideband antenna. Dong et al. (2017) proposed to
combine kriging model with MOEA/D to optimize 𝑆11 and footprint of
planar miniaturized multiband antenna.

5.2.3. ANN assisted specification modeling for antenna optimization
Budak et al. (2021) integrated ANN into ML-assisted optimization

framework with low training cost and high accuracy. Tak et al. (2018)
applied ANN to optimize W-band slotted waveguide array antenna,
where MLP predicts the sum of the 𝑆11, SLL and backlobe level. Pa-
athanasopoulos et al. (2023) proposed an ANN-assisted optimization
lgorithm, where ANN is iteratively trained online to select new designs
or simulation. Peng and Chen (2024b) combined a sparse ANN and
n improved quantum GA to optimize antenna, which improves the
lgorithm’s search ability with a small population size.

.2.4. Other ML methods assisted specification modeling for antenna opti-
ization

In addition to the above applications, some other ML methods or
ulti-surrogate methods have also been applied to antenna optimiza-

ion. Liu et al. (2011) proposed to assist DE by GPR with expected
mprovement for global exploration and ANN for local exploitation. Fu
t al. (2022) proposed PSO with mixed prescreening by RBF and kriging
odel. Zhao et al. (2021) combined RBF with self-adaptive DE to

ynthesize array pattern nulling. Peng and Chen (2024a) combined
n enhanced diploid GA and local RBF to optimize antenna arrays,
hich simplifies the correlation between antenna parameters and per-

ormance, consequently decreasing the required sample size. Li et al.
2022) proposed an online data-driven enhanced-XGBoost method for
ntenna optimization. KNN has also been applied to online antenna
ptimization (Cui et al., 2020) and design of double T-shaped monopole
ntenna (Sharma et al., 2020).

.3. Summary

To have a more intuitive view of engineering application, we inves-
igate typical research of specification modeling for antenna optimiza-
ion in Table 7 and make a comparison in terms of antenna type, ML
lgorithm and optimization algorithm.

.4. Remarks

Machine learning-assisted evolutionary optimization has been
idely developed to model and optimize antenna specification. Among
 e

14 
ML methods, GPR is widely used because it is very suitable for the opti-
mization with limited expensive data and able to provide uncertainty of
prediction. ANN is usually for local approximation. SVR distinguishes
itself in terms of model efficiency. Some other ML methods have also
been incorporated for antenna design.

6. Discussion

Based on above three parts of the review, a comprehensive introduc-
tion of both ML and EC for antenna design is provided that area of circle
in Fig. 6 is fully covered (blue shaded area for Section 3, red upper
semicircle area for Section 4, red lower semicircle area for Section 5).
Differences between response modeling and specification modeling are
highlighted (Sections 4 and 5). Due to space limitation, this paper does
not introduce the combination of traditional mathematical methods and
EC, ML in antenna design too much.

Although ML and EC have empowered antenna design with encour-
aging progress and applications (Tables 3, 5, 7), there is still a long way
to go for AI-assisted antenna design. This section briefly summarizes
some bottlenecks and suggests promising directions, which is outlined
in Fig. 12. Emerging trends are also suggested.

6.1. Challenges

Expensive cost. Fullwave solver of complex antenna is still time-
onsuming. Although existing response modeling methods (Table 5)
ave tried to replace EM simulation software based purely on ML,
hey usually only predict one or several responses for a certain type
f antenna, which is not general and has its own limitations (Table 6)
hat it cannot completely replace EM simulation. Therefore, developing
general and accurate response modeling method with low cost is still

n urgent challenge to be solved.
Masses of design variables. Since modern antennas become in-

reasingly complex, the number of design variables has been growing
apidly. This poses challenges to both ML modeling and EC search that
esign space becomes explosively-growing. Although existing work has
ried to reduce the design parameters from the perspective of parameter
ensitivity analysis (Li et al., 2022), it is hard to handle the case that
large number of design parameters have significant impact, such as

ynthesis of large scale planar array. Therefore, modeling and optimiza-
ion of antennas with a large number of design variables remains a
hallenge.
Numerous design specifications. Complex antenna design also

uts forward higher requirements for design specifications. Existing
ntenna designs often stick to the requirements of a few design spec-
fications (Table 3). Although specifications can be optimized step by
tep (Jiao et al., 2023) when there are more than three design specifica-
ions, numerous design specifications brings challenges of accumulated
odel prediction errors and the high cost of model training (Budak
t al., 2021). Therefore, when the number of design specifications
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Fig. 12. Summary of challenges and promising directions.
omes to dozens or even hundreds, how to get a better and satisfactory
et of designs is still a challenge.
Problem formulation. Problem formulation is even the most im-

ortant and difficult challenge since beginning with wrong assumptions
ormally leads to worthless results and wastes a lot of time and
omputing resources. Existing problem formulation is often based on
he experience of engineers (Table 3), which may lead to significant
egative effects. Therefore, how to leverage the existing knowledge
o formulate optimization problem and make it more in line with
ngineering problem remains a challenge.
Exploiting prior knowledge. Incorporating priori knowledge into

he modeling and optimization of antenna have been proven to speed
p and improve the design to a great extent (Hong et al., 2022; Wu
t al., 2022a; Chen et al., 2023). The knowledge that can be used gen-
rally includes antenna domain knowledge, knowledge learned from
xisting data, expert experience knowledge, algorithm knowledge, etc.
owever, there are still questions that need to be answered, including
hat knowledge is worth using and how it can be used more effectively.
A general antenna design platform. A general antenna design

latform is urgently needed for both industry and academia. Existing
ntenna design tools include EM simulation software (Fedeli et al.,
019) and antenna optimization software (Jin et al., 2018). Although
here are some antenna optimization platforms that call on EM simula-
ion software, they do not include enough antennas and optimization
lgorithms. Therefore, developing an open, general design platform
hat covers most of the existing AI antenna progress is a challenge.

.2. Promising directions

General antenna response large model. Building a general an-
enna response large model is the most attractive way to replace EM
imulation and overcome expensive cost difficulty. Specifically, it is
ecessary to first establish a general stable antenna database to store
ig data to provide conditions for the model, then it needs better
ardware computing capabilities such as computer clusters, and finally
t is necessary to develop some special AI architecture for big data.
andidate possible implementation is suggested in Appendix, including
ataset preparation, model design and test, model training.
Expensive high-dimensional antenna optimization. Since it is

difficult to solve the problem that the dimensions of design variables
are too high from the perspective of antenna engineering practice,
application of some new AI algorithms is expected to solve this diffi-
culty. For example, encouraging results have been obtained in solving
expensive high-dimensional optimization problems with thousands of
design variables (Sun et al., 2017; Tian et al., 2018; Sun et al., 2022).

Classification model. Since main concern of antenna design is to
obtain the optimal antenna design at the smallest cost and the specific
value of antenna performance in the optimization process is not very

concerned, it is possible to leverage classification model to sort different

15 
antenna designs and guide evolutionary optimization, which typically
avoids modeling numerous antenna specifications. For example, classi-
fication models that have been applied to solve expensive optimization
problems (Pan et al., 2018; Hao et al., 2022) are promising choice for
antenna design.

Ensemble learning. Ensemble learning can provide more reliable
and accurate performance than a single learner. It has been successfully
applied in antenna design (Wang et al., 2022). Modeling different
antenna problem formulations by heterogeneous ensemble learning is
expected to reduce bias.

Transfer learning. Transfer learning can make full use of prior
knowledge by taking advantage of the similarities between learning
tasks. There have been attempts to use transfer learning in antenna
design (Guo et al., 2020). To transfer antenna domain knowledge and
avoid negative transfer is a promising choice in antenna design.

Generative antenna design software. Shi et al. (2022) proposed
an antenna synthesis system that inputs desired design specifications
and outputs an antenna design that meets the requirements, which
provides the forerunner for general antenna software. Recently, large
generative model has raised much attention due to their excellent
ability to emancipate the productive forces (Radford et al., 2018).
Therefore, it is a promising direction to develop a generative antenna
design software that can design antenna according to user requirements
automatically. For example, develop the antenna synthesis basic intel-
ligence software (AntsynGPT) to form an interpretable and canonical
antenna dynamic optimization theoretical system, which can provide
the antenna design core functional sub-modules for the general AI.

6.3. Emerging trends

Recently, thanks to the development and popularity of ANN or
deep learning techniques, several efforts have emerged in the antenna
and propagation community to combine state-of-the-art deep learning
techniques with corresponding antenna designs. For example, Yang
et al. (2023c) applied deep neural networks to facilitate the circularly
polarized antenna array synthesis with mutual coupling. He et al.
(2023) combined ANN and simulated annealing algorithm to design
the wideband patch antenna. Yang et al. (2023b) applied ANN to
real-time pattern synthesis for large-scale conformal array. Zhao et al.
(2023) combined ANN and inverse fast Fourier transform to realize effi-
cient beampattern synthesis for large-scale time-modulated arrays. Sun
et al. (2024) proposed an efficient iterative method assisted by ANN
for pattern synthesis of arbitrary conformal arrays. Bai et al. (2024)
applied improved conditional generative adversarial network to real-
time diagnosis of impaired conformal antenna arrays. Convolutional
Neural Network has been applied to antenna geometry design (Wu
et al., 2024). Convolutional Neural Network-Long Short Term Memory
network has also been applied to antenna modeling (Wei et al., 2023;

Zhu et al., 2024b).
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7. Conclusion

This paper presents a comprehensive overview of both ML and EC
for antenna modeling and optimization. Theoretically speaking, this
survey provides a complete guide for inspiring new AI antenna design
methods. Practically speaking, this survey is expected to promote the
application and implementation of some new method theories in the
field of antenna design. This paper contributes to quickly investigate
the application of ML and EC in antenna design for antenna and
propagation community, and gives a guidance to build different types
of EM simulation surrogate models, including response modeling and
specification modeling.

Over past decades, EC has made great progress in antenna design.
According to different problem formulation, various types of EAs have
been successfully applied to single-objective antenna optimization, mul-
tiobjective antenna optimization and constrained antenna optimization.
ML have demonstrated its advantage to accelerate antenna optimiza-
tion design by building surrogate model to learn the mapping between
antenna design parameters and antenna performance. In the field of an-
tenna design, two kinds of ML surrogate models of EM simulation have
been applied, including response modeling and specification modeling,
which can both greatly accelerate the process of antenna design and
promote automatic antenna design to intelligent antenna design.

Although AI-assisted antenna design has made great progress, there
is still limitations for development. For example, modern antenna de-
sign becomes more and more complicated and makes design costs more
expensive, which involves large-scale design parameters, design spec-
ifications and poses great challenges to existing methods. Moreover,
existing antenna design does not make full use of expert experience
and EM theory knowledge, which can be further used to improve the
design performance. Furthermore, the development of a common non-
commercial antenna design optimization platform will help to promote
the development of academic and engineering in the field of antennas.
Some opportunities are suggested in this field. For example, using
classification model to learn the relation between different antenna
designs is expected to avoid many specifications modeling and opti-
mization. Moreover, using transfer learning to make full use of EM
field knowledge and expert knowledge is expected to further improve
antenna design efficiency.
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Appendix. Pseudocode of general antenna response large model

Algorithm 1 General antenna response large model
Dataset preparation:

1: Data collection: Collect data from initial data, new data generated during the optimiza-
tion, data generated by EM knowledge and measurement data. Various antennas (such
as patch antennas, Yagi antennas, array antennas, etc) are needed to generate data.

2: Data preprocessing: Include data classification, labeling to ensure the quality and format
of the data.

3: Database construction: Construct response database according to antenna type.
Model design and test:

4: Model architecture selection: Choose model architecture for the task, such as Transformer
architecture.

5: Parameter adjustment: Adjust the hyperparameters of the model, such as learning rate
and batch size.

6: Model validation and testing: Use validation sets and test sets to evaluate the performance
of the model and make necessary adjustments.
Model training:

7: Training process: The pre-processed data is entered into the model for training, which
may require a lot of computational resources.

8: Training monitoring: Monitor the loss function value and other indicators in the training
process to ensure the stability and effect of training.

9: Model evaluation and tuning: Evaluate the performance of the model using validation
and test sets, and adjust the model parameters or architecture based on the evaluation
results.
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