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Abstract

Nowadays, publishers like Elsevier increasingly use graphical abstracts (i.e., a

pictorial paper summary) along with textual abstracts to facilitate scientific

paper readings. In such a case, automatically identifying a representative

image and generating a suitable textual summary for individual papers can

help editors and readers save time, facilitating them in reading and under-

standing papers. To tackle the case, we introduce the dataset for Scien-

tific Multimodal Summarization with Multimodal Output (SMSMO). Unlike

other multimodal tasks which performed on generic, medium-size contents

(e.g., news), SMSMO needs to tackle longer multimodal contents in papers,

with finer-grained multimodality interactions and semantic alignments be-

tween images and text. For this, we propose a cross-modality, multi-task
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learning summarizer (CMT-Sum). It captures the intra- and inter-modality

interactions between images and text through a cross-fusion module; and

models the finer-grained image-text semantic alignment by jointly generat-

ing the text summary, selecting the key image and matching the text and

image. Extensive experiments conducted on two newly introduced datasets

on the SMSMO task showcase our model’s effectiveness.
Keywords: Multi-task, Multimodal Scientific Summarization,

Cross-modality Fusion

1. Introduction

As scientific publications continue to increase (especially fuelled after

global challenges like COVID-19 and breakthrough technologies like Chat-

GPT), they have become an important knowledge source for data science and

artificial intelligence (AI) research1. To help scientists/scholars to stay well-

versed in the deluge of information, it is essential to advance natural language

processing (NLP) technologies for scientific document summarization.

Scientific literature is deemed to be visually-rich documents, conveying

not only text, but also images (e.g., charts, tables and figures). Images help

readers to gain a visualized understanding of the paper while the text provides

more details related to it. As illustrated in Figure 1, the theme of the pa-

per is a model which can jointly perform “Chinese named entity recognition”

(NER) and “Chinese word segmentation” (CWS), with “shared information”

1According to the latest Stanford AI Index Report [1], there is a 1.4-time growth

in publication (from about 350k to 500k) in the last 5 years, especially in topics like

multimodal language models, generative AI and healthcare AI.
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and “self-attention” (see Text Abstract A1 to A3). Here, the Graphical Ab-

stract (a schematic diagram2) represent the relationships between different

model elements (e.g., self-attention, NER, CWS) and features (e.g., shared

information) through visual components such as colour and lines. However,

the diagram alone may not be sufficient in clearly expressing specific con-

tent. Conversely, the text modality contains detailed descriptions of individ-

ual model objects but has limitations in revealing their intrinsic connections.

In such a case, it is essential to have a multimodal summary, which contains

both a textual paper summary (a.k.a., text abstract) and a representative

image (a.k.a., graphical abstract) of the given papers. The two sets of in-

formation can complement each other and enrich summarization, thereby

helping readers save time and read the papers more effectively.

Scientific document summarization has been a long-standing research

topic in NLP [4, 5, 6]. The output of existing scientific summarization sys-

tems are usually text-only [7, 8, 9, 10, 11, 12, 13, 14]. Recently, Multimodal

Summarization with Multimodal Output (MSMO) has been explored in sev-

eral areas, including news headline generation, legal fact-checking and social

media post summarization [15, 16, 17]. MSMO models aim at generating

both image and text summaries using a joint model. Compared to the text-

only methods, which only produce an unimodal summary, MSMO provides

a better user experience with an easier and faster way to get useful informa-

2From the survey work conducted by Yoon et al., (2017) [2] and Yang et al., (2019) [3],

paper authors commonly used schematic diagrams and photos as graphical abstract to

enhance the illustration of their models and backgrounds in the paper, equally popular

are charts and table for better-presenting result. We describe more details in Sec. 2.2.
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Figure 1: A paper-summary example taken from our AVIATESMSMO dataset. To facil-

itate understanding, we manually segmented the text abstract into several parts, each

corresponding to specific themes or sections within the original paper. The blue words

in the text summary represent keywords that exist in the source text, whereas the green

words represent concepts presented in the images. Underlined words represent items that

presented in both the source text and images.
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tion [18]. In this paper, we introduce a novel dataset for Scientific Multi-

modal Summarization with Multimodal Output (SMSMO). The objective of

SMSMO is to train models that can generate text summaries while also iden-

tifying the key image associated with each individual paper. Its significance

lies in the potential to enhance the clarity and accessibility of research find-

ings. Accurate and comprehensive summaries enable better comprehension

and quicker assimilation of paper contents, which is critical in the fast-paced

research environment. Furthermore, multimodal summaries can facilitate

the development of (multimodal) paper retrieval systems, with both text

and visual abstracts captured by the search engines. This helps increase the

reach of the research as it is no longer restricted to searchability by textual

content [19].

In SMSMO, the multimodal information, be it image or text, describes the

same paper. These two sets of information complement each other during the

summarization process. A direct way to encode the two information sources

is to combine them as a global feature vector, using it to generate multi-

modal summarization [20]. However, images and text generally have distinct

feature spaces. Hence, directly combining the two is not an effective ap-

proach for capturing the essential information from both modalities. Indeed,

this method may introduce noise and hinder the performance of summariza-

tion [21]. Different methods have been proposed to fuse the image and text

features, ranging from specific task designs to different optimization strate-

gies. For example, Xiao et al. (2024) [22] proposed a multi-stage approach

in which they first optimize the text summarizer, then the image selector via

self-labelling to preserve the images that are relevant to the generated sum-

5



mary. Moreover, Zhu et al. (2020) [23] included an image selection task into

text summarization, selecting the pseudo key image based on the full source

text and the summary generated. Furthermore, Phani et al. (2024) [24] in-

corporated a selective-gate mechanism for multilingual MSMO tasks, aiming

to fuse the text-image features across multilingual news. Typically, these

approaches focus on either global or local image-text correspondences, with

few effectively addressing both simultaneously. Global-level approaches fo-

cus on mapping all images and the entire document into a shared space. For

example, Krubinski et al. (2024) [25] used a large language model to unify

summary generation and image selection. It can fully extract global-level

features across image and text, but there is a large gap between finer-grained

feature spaces. While powerful in capturing the high-level theme, they often

overlook intricate details, neglecting the fine-grained correspondences across

modalities. Conversely, local-level approaches focus on aligning images and

text by accumulating similarities of individual patch-phrase pairs [26, 27].

For example, Jin et al. (2024) [28] build a word graph from review text

and enrich it by linking detected image objects to their corresponding enti-

ties. This approach results in summaries that are rich in specific, detailed

information but may lack cohesive structure or fail to convey the document’s

overarching message. It is important to consider how to effectively learn fea-

tures from multimodal modalities at different levels to obtain high-quality

summaries in SMSMO.

In scientific papers, text and images can convey information at different

levels of granularity or with varying degrees of semantic similarity. Par-
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ticularly, scientific papers are often organized by sections (e.g., IMRaD3),

in which text and images within the same section exhibit high intra- and

inter-modal correlation. On one hand, there exists a hierarchical semantic

relationship within the same modality between visual and textual elements.

As showcased in Figure 1 (refer to S1 to S3), textual content at the word

level (e.g., “The task of named entity recognition (NER) is to...”) contributes

to the broader section-level context (i.e., Introduction) within individual pa-

pers. On the other hand, individual image semantics typically align with the

section’s textual content referencing them (e.g., F1 visually illustrates the

concept of a NER task), displaying an inter-modal correlation. Furthermore,

the theme of Abstract A1 to A3 also aligns with the sectional content of S1

to S3 and F1 to F5. Understanding these correlations enables one modality

to compensate for missing information in the other (see the underlined words

in A1 to A3). Additionally, by integrating multimodal elements at various

levels, the resulting summary can contain a fine-grained description of the

textual content as well as the most relevant image, offering a more informa-

tive, intuitive, and accessible narrative compared to conventional text-only

summaries.

This paper presents CMT-Sum, a cross-modality multi-task learning model

for SMSMO. CMT-Sum aims to learn both intra- and inter-modal corre-

lations in paper text and images. Initially, two unimodality encoders are

utilized to learn individual image and text features at an intra-modal level.

Next, a cross-modality fusion (CFM) module is introduced to capture the

3IMRaD (Introduction, Methods, Results, and Discussion) refers to a common orga-

nizational structure in scientific writing.
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inter-modal correlation between the image and text. It includes two sub-

modules, image-text (section) fusion, and section-word fusion. Therefore, the

learned representation comprehensively captures information ranging from

global-level semantics to local-level correlations between text and images.

The hierarchical and progressive design allows the model to generate sharper

intra-modality and inter-modality fusion features effectively. To improve the

quality of multimodal output (with consideration of the fine-grained interac-

tion between text and images), we propose a multimodal objective function,

in which text summary generation, image selection and image-text relevance

matching are jointly optimized. The tasks aim to coalesce various levels of

fused semantic features, encompassing word, section and image semantic fea-

tures, along with their interaction. To evaluate our CMT-Sum, we construct

the first dataset for SMSMO in scientific NLP. The experiment conducted

on our datasets reveals that CMT-Sum achieves better performance com-

pared to other baseline methods in both automatic evaluations and human

assessments.

2. Related Work

2.1. Scientific Document Summarization

Automated summarization of scientific documents is a long-standing re-

search area in NLP ([4, 5, 6]). Significant progress has been made with

the development of practical datasets and evaluation tasks. Examples in-

clude: abstract generation [29], citation sentence generation [12], Related

Work section generation [9] extreme summarization (i.e., one-line summary

of the entire paper) [11] and layman text generation (i.e., generating a simple
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text from the source paper that non-experts can understand) [30]. With the

advancement in data, different summarization models have also been devel-

oped. These include models that exploit citation contexts [31]; and other

techniques that exploit the distinctive characteristics in scientific documents

such as long length and structure ([10, 32, 33]). The datasets and models

denote valuable resources in scientific NLP. They are intriguing (they help

researchers more quickly understand the basic ideas in a piece of research),

but inadequate for scientific summarization. Particularly, the output of

these models is usually in a single modality, notably text.

2.2. Graphical Abstract

The long and complex structure of scientific text poses a challenge in iden-

tifying the key semantic components and converting them into a structured

format. Hence, journal publishers have been exploring concise summaries in

other modalities like images (a.k.a. graphical abstract). A graphical abstract

(GA) provides a concise image summary of a paper’s theme and contribu-

tion. Regarding this, Yoon et al., (2017) [2] reported a 350% increase of

GAs used in social science from 2011 to 2015. In computer science, Yang et

al., (2019) [3] examined the papers accepted in top conferences like ICCV

(International Conference on Computer Vision) and CVPR (Conference on

Computer Vision and Pattern Recognition). They observed that more than

half of the authors (68% in ICCV and 65% in CVPR) incorporated the “teaser

figures” (a form of GA) in their paper submissions. Among these figures, al-

most half of them are diagrams and pictures, which are used to provide an

overview of the proposed methods, models and backgrounds. Another typi-

cal use of GA is for better presenting research findings, using charts, tables
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or plots. It is essential to have both text and visual modalities. Particularly,

the image modality (e.g., charts) represents the relationships between ele-

ments/concepts and data features through visual components such as colour

and lines, while the text modality contains more detailed descriptions of in-

dividual elements and conveys deep insights [3]. Hence, these two sets of in-

formation can complement each other and enrich summarization. Nowadays,

leading publishers of scientific articles (e.g., Elsevier) also suggest authors

provide multimedia summaries (i.e., a textual abstract supplied with GA) to

facilitate the searching process [34].

2.3. Multimodal Summarization

In general NLP, multimodal summarization (MMS) is rapidly expanding,

with various applications such as review summarization [35] and discussion

summarization [36]. Different from the traditional Single summarization with

Single Output (SSO), MMS aims to extract salient information from vari-

ous input modalities, including text and images, to produce a concise sum-

mary encapsulating the core multi-modal semantics. MMS methodologies

are broadly classified into two categories: Multi-modal Summarization with

Single-modal Output (MSSO), characterized by a unimodal summary (e.g.,

text), and Multi-modal Summarization with Multi-modal Output (MSMO),

which generates both textual and visual summaries for comprehensive rep-

resentation.

In MSSO, researchers often concerned about how to improve the quality

of text summarization through multimodal data sources. For example, Li

et al. (2018) [37] presented an extractive approach aimed at summarizing

sentences from a collection of articles, audio clips, images, and videos. To
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address the noise present in multimodal sources, Lu et al. (2024) [38] use

cascade gates to balance the contribution of each modality. Besides, Ar-

gadea et al. (2024) [39] introduce a two-level attention mechanism, which

involves a first-level pairwise computation of the attention weights between

text and other modalities, followed by a second-level attention that focuses

on the pairwise attention feature. A different approach was taken by Jin et

al. (2024) [28], who employed a bi-hop graph to achieve alignment between

different modalities. Their method first aligns the word with its correspond-

ing sentence in the document and then aligns the sentence with the image

caption, thereby establishing a connection between the image and the text.

Other studies also explored attention activation [40], selective gating [41],

and self-labeling [22] techniques to guide the selection and filtering of mul-

timodal noise, thereby improving summarization performance. Apart from

reducing data noise, some studies explore modality-specific features. For ex-

ample, Zhang et al. (2021) [42] leveraged image location information via

multimodal fusion blocks to capture high-order text-image interactions. In

the e-commerce domain, Li et al. (2020) [43] used both product images and

textual descriptions of product aspects to enhance their multimodal sum-

marization model. Other than that, some studies explore using pre-training

models/strategies. For example, Jing et al. (2023) [44] used contrastive pre-

training to connect text and image attributes semantically. They aim to

align the text and image representations of images and text by enhancing

their similarity. Also, Liu et al. (2023) [45] employed knowledge distillation

techniques to extract relevant information from pre-trained vision-language

models, improving their multimodal headline generation model. Another
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type of approach aims to model the intricate relationship between semantic

elements like words/phrases and image segments. For example, Jiang et al.

(2023) [46] and Li et al. (2020) [47] partition the image into patches and

model the similarity between these patches and word representations. Sub-

sequently, they identify the patches that exhibit high similarity with the text

and utilize them as the image gate to guide the text encoding procedure.

Along similar lines, Xiao et al. (2023)[27] present two visual complement

modules at the word and phrase levels. By leveraging images to enhance

semantic understanding at these levels, they facilitate comprehensive multi-

modal alignment. Some approaches focus on aligning semantic details across

modalities at the attention layer, bridging the semantic divide between text

and image models. For instance, Yu et al. (2021) [48] enhance pre-trained

text embeddings (BART) by integrating visual cues through a newly in-

troduced cross-attention mechanism in each encoder layer. Suman et al.

(2021) [49] and Overbay et al. (2023) [17] embed cross-attention layers into

the Transformer architecture [50], allowing simultaneous observation of input

texts and images. There are also other alignment techniques, depending on

optimal transport [51] and video-text time correspondences [52]. This en-

ables nuanced cross-modal learning, leading to superior text summarization

quality.

Unlike MSSO, MSMO enhances the interaction between multi-modal fea-

tures by incorporating auxiliary tasks (e.g., key image selection), resulting in

better text summarization performance. For instance, Zhu et al. (2018) [18]

proposed the first MSMO model, where they use a cross-attention mechanism

to fuse the text-image features for better text generation, and the coverage
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mechanism is used to help select representative images. Later on, Zhu et

al. (2020) [23] improved the MSMO model by replacing the coverage mech-

anism with pseudo image labels. These labels were obtained by comparing

the image caption with the target summary and the order in which the im-

ages appear. Overbay et al. (2023) [17] and Liu et al. (2024) [53] utilize

hierarchical attention to merge textual and visual features for generating a

summary, enclosing also a key frame from associated videos to enrich the

summary. Zhang, Meng et al. (2022) [54] introduced a joint model, which

simultaneously outputs abstractive and extractive text summaries and a rep-

resentative image. Variant MSMO tasks have also emerged recently. For

example, Krubiński et al. (2023) [15] proposed a dataset and explored the

use of a hierarchical attention mechanism for MMSO in Czech news. Subse-

quently, the authors explored the application of large language models like

BART and T5 for generating news headlines from images and videos [25].

Additionally, Phani et al. (2024) [24] propose a selective gate to align the

text-image semantics in multilingual news. In the legal domain, Yao et al.

(2023) [16] introduced an MSMO dataset for explanation generation and legal

fact-checking. They further explore using a shared encoder with multitask

training to predict the veracity (Supported or Refuted) based on textual and

visual evidence while also generating relevant explanations for the predic-

tions.

In contrast to the growing work of MMS in different domains, there is

inadequate work in scientific MMS. Some emerging works include Yang et

al. (2019) [3] and Atri et al. (2021; 2023) [7, 55], who incorporated paper

images and presentation videos for paper summarization. But still, their out-
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puts are represented in a single modality, either text or images (not both).

Other than that, most existing studies on text and vision alignment concen-

trate on mapping images with texts at either a broad, global level (covering

entire documents and all images) or a more specific, localized correspondence

(between image patches and individual words/phrases). This tends to over-

look the intricate hierarchical semantic relationships within multimodal sci-

entific text, spanning from words to sections. Furthermore, existing MSMO

datasets in general domains often lack labelled images in the training set,

which somewhat restricts supervised training for image selection [27]. In

contrast to these approaches, our model is designed to grasp the hierarchi-

cal semantic structure from words to sections and the nuanced correlations

between images and text. Moreover, we will develop a dataset for Scientific

Multimodal Summarization with Multimodal Output (SMSMO). This dataset

aims to facilitate multimodal learning with supervised information in scien-

tific contexts.

3. Problem Definition

In SMSMO, a summarizer takes a paper along with its corresponding

images as the input, and generates a multimodal summary. This summary

encompasses both textual abstract (i.e., a text summary) and graphical ab-

stract (i.e., a representative image for the paper). Formally, each paper

input consists of a sequence of word tokens Xt = w1, ..., wm, and a se-

quence of paper images Xi = img1, ..., imgn. The output text is a word

sequence Yt = y1, y2, ..., yt, while the output image is the representative im-

age Yi = imgn. The summarization model can be viewed as an optimization
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problem of its set of trainable parameters (θ):

argmax
θ

MODEL(Yt, Yi|Xt, Xi; θ) (1)

4. Our Model

Our SMSMO incorporates multimodal information into scientific summa-

rization, aiming to improve the (summarization) performance and the diver-

sity of generated summaries. On the one hand, the multimodal information,

be it image or text, describes the same paper. Hence, these two sets of infor-

mation can complement each other and enrich summarization. On the other

hand, a multimodal summary helps readers save time and read the papers

more effectively, with the graphical abstracts help readers to gain a brief,

visualized understanding of the paper while the text abstracts provide more

details related to it. Currently, cutting-edge scientific summarizers typically

consider summaries of a single modality, either text or images (not both)

(e.g., [3, 7, 55]). Here, we introduce a cross-modality, multi-task learning

model (CMT-Sum). It captures not only the intra-modal features within

individual paper text and images, but also their inter-modality correlation.

As shown in Figure 2 (left), CMT-Sum comprises three modules: the Fea-

ture Encoder encodes the intra-modal features of images/text in individual

papers; the Cross Fusion Module (CFM) learns cross-modality correlation

and fuses the intra- and inter-modal features; the Multimodal Objective Gen-

erator (MOG) utilizes the fused features to output the text abstract and

chooses the key image as the graphical abstract for individual papers. Ad-

ditionally, it computes a fine-grained alignment score (Image-Text Matching

loss) between images and text.
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Figure 2: The overview of our CMT-Sum.
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4.1. Feature Encoder

To encode the intra-modality features in images and text, we deploy a

Feature Encoder which contains an Image Encoder and a Text Encoder.

4.1.1. Image Encoder

Given a set of paper images Xi = {img1, img2, ..., imgn}, we utilize the

ResNet-101 model [56] to encode image features. These features are then fed

into a Transformer encoder [50] to learn the intra-modal information among

individual images. The visual embeddings of the nth image (vn) is learned as

follows:

vn = ResNet (imgn) (2)

4.1.2. Text Encoder

Paper texts are usually long, consisting e.g., 100-200 sentences. Generally,

a paper is divided into multiple sections, each describing certain themes.

Here, we hierarchically encode paper text. Particularly, a local word encoder

will encode individual word contents, followed by a global section encoder to

obtain a sequentially contextualized embedding for each paper, using all the

surrounding sections as global context (see Figure 2 bottom left). Intuitively,

our hierarchical encoder first absorbs the local word context on each section

level, which is then transferred to a global, section-level paper context.

Word Encoder. We utilize the Longformer [57] to encode long paper

text with reduced computational costs. Here, the text input is first tokenized

and padded to form a fixed-length sequence. The Longformer then captures
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contextual word features for each text. The computation of the mth token

embeddings within a paper can be expressed as follows:

tm = Longformer(wm) (3)

Section Encoder. We extend the hierarchical encoding scheme in BERT-

SUM [58] from sentence level to section one. Academic papers often follow the

typical IMRaD structure with sections like Introduction, Method, Result,

and Discussion. This inherent structure can be extracted with off-the-shelf

paper parsers like Grobid [59]. Then, a [CLS] token is added at the start

of each section. It collects features for the tokens preceding it. Formally, the

token embeddings are mapped into section embeddings as:

sj = {tCLS, t1, ..., tT} . (4)

4.2. Cross Fusion Module (CFM)

A graphical abstract (i.e., visual summary) should cover the main theme

of a paper, while the text abstract will also contain the essential information

from source articles. Hence, the two sets of information complement each

other in the summarization process. Here, we incorporate a cross-fusion

module (CFM) to jointly model the visual-textual dependency of the image

and text. CFM contains 3 parts: cross-attention, self-attention and feed-

forward layers (see Figure 2 bottom right). To fuse the section embeddings

{s1, s2, ..., sj} and visual embeddings {v1, v2, ..., vk}, a cross-attention layer is

deployed as:
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α = softmax (score(sj, vk)) (5)

CrossAtts→v = α vk (6)

where sj is a query section embeddings, vk is visual image embeddings, and

score denotes a product function that computes the similarity between indi-

vidual section and image embeddings. The three layers in CFM are defined

as follows:

scrossj = CrossAtts→v (sj, {v1, v2, ..., vk}) ,

sselfj = SelfAtts→v

(
scrossj , {scrossj }

)
,

soutj = FF
(
sselfj

) (7)

where scrossj and sselfj are the results after the cross-attention layer and the

self-attention layers (resp.), followed by the feed-forward layers denoted as

FF (·).

We learn the inter-modal correlation between text and image using cross-

modality attention. The fused representations are denoted as:

s1j = CFM (sj, {v1, v2, ..., vk}) (8)

v1k = CFM (vk, {s1, s2, ..., sj}) (9)

where s1j is the image-aware embeddings of the jth section text after the

fusing in CFM, and v1k is the text-aware embeddings of the kth images after

fusing with text.
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4.3. Multimodal Objective Generator (MOG)

Suppose we have the image reference besides the text reference during

model training. To utilize the multimodal reference in training, we propose

a generator with a multimodal objective function, which considers not only

the negative log-likelihood loss of text summary but also a cross-entropy loss

for selecting GA and a binary cross-entropy loss on image-text matching.

Concretely, we decompose the multimodal summarization into three sub-

tasks: text summary generation, image selection and image-text matching

(see Figure 2 top right). The text generator creates the (text) summary; the

image selector picks the most relevant figures in the paper as its graphical

abstract; and the image-text matcher determines whether an image is related

to the text content. Particularly, the text generator employed a hierarchi-

cal attention mechanism to enhance its learning of the text features, which

combines the local word and the global image-aware section representation

(as obtained from the CFM) for decoding the output word at the current

state. Concurrently, the key image will be chosen, ensuring that it aligns

closely with the semantics of the generated text summary at each stage of

the decoding process. Consequently, the target image chosen at the final step

aligns closely with the complete semantics of the generated text summary.

The matching task captures nuanced text-image expressions within sections,

balancing global and local alignment strategies. We apply multi-task learn-

ing [60, 61] to train the three subtasks simultaneously. We now describe the

task details.
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4.3.1. Visual-aware Summary Generation

For summary generation, it needs to incorporate multimodal information.

To accomplish this, we designed a hierarchical decoder that initially focuses

on the multimodal semantic alignment representation and subsequently di-

rects attention to the existing text summary to extract the relevent context

vector for summary generation. Our hierarchical decoder follows the trans-

former architecture. Specifically, we use the last hidden state of the text

representation tm as the initial state d0 of the transformer decoder, and the

ℓth generation procedure is:

dℓ = Transformerdec(dℓ−1, yℓ−1, Cℓ−1), (10)

where dℓ denotes the hidden state at ℓth decoding step, yℓ−1 denotes the

previous output and Cℓ−1 is the context vector. Here, we want our context

vector to benefit from both the word representation (t) and the image-aware

section representation (s1). Hence, we deploy a hierarchical attention mech-

anism over the two representations, computing a higher-level context vector.

Particularly, we first compute the cross-attention weight βsec between the

section content s1 and the last decoding state dℓ−1:

βsec = softmax
(
score(s1, dℓ−1)

)
. (11)

where the last decoding state dℓ−1 is derived from the decoder input yℓ−1, and

is combined with the image-aware section representation s1 to compute the

section-relevant score for the input source text. The scores are constrained

to a range of 0 to 1 using the softmax to obtain section-relevant attention

weights βsec. The weight captures the dependency between the decoding state
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and individual source sections, which can be an indicator of section relevancy.

For example, when summarizing research findings, the chart and text in the

Result section can be more relevant (see the connection between F3, F4,

S3 and A3 in Fig. 1). The section-guided attention indicates which section

content is relevant when decoding each word. Consequently, we use the

section attention to guide the word attention. Formally, the word attention

is denoted as:

βword = softmax (βsec · score(t, dℓ−1)) (12)

where the last decoding state dℓ−1 is combined with the word representation t

to compute the word-relevant score, which captures the dependency between

the decoding state and individual words. Then, taking the section attention

βsec as guide/condition, the attention weight on each word βword can be

computed. After that, βword is used to weigh the source word representation

tm to obtain the context vectors:

Cℓ =
∑

i
βwordt. (13)

The context vector (Cℓ), which contains relevant contents from both the word

representation t and the image-aware section representation s1, are concate-

nated with the decoder state dℓ. A linear layer then uses the concatenated

vector to create the probabilities for each word (Pw):

doutputℓ = σ (FF ([dℓ;Cℓ])) , (14)

Pw = softmax
(
FF (doutputℓ )

)
. (15)
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For the text summary generation task, its loss is computed using negative

log-likelihood against the target word yℓ:

LGEN
θ =

∑
ℓ
logPw(yℓ). (16)

4.3.2. Image Selection

We assume that the importance of an image is related to two aspects: the

information conveyed solely in the raw images and the relevancy of the image

information that complements/aligns with the text. Hence, the graphical

abstract (i.e., the representative image of each paper) is chosen based on two

representations, the original image representation (v) and the text-aware

image representation v1. Here, we incorporate a fusion gate to weight the

two sets of representations. The fusion gate’s weight is determined by the last

hidden state of the text decoder (dℓ−1). That way, the gate uses images as the

main guide and text as support to find the salient information. Consequently,

the image score is computed as:

γ = σ (FF (dℓ−1)) , (17)

pimage = γ v + (1− γ) v1, (18)

yi = σ
(
FF (pimage)

)
. (19)

When generating text summary in eq. 15, the fusion gate is activated to

balance the source image representation v and the text-aware image rep-

resentation v1. The gate observes the last decoding state dℓ−1 during text

summary generation to obtain the gating score γ. The score controls whether

the image selector focuses more on the original image representation (larger
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γ) or the text-aware one (smaller γ). Subsequently, each image’s probabil-

ity pimage is calculated, and the highest probable image (yi) is picked as the

graphical abstract. We calculate the loss function for the image selection

task as:

LIS
θ =

1

N

∑N

i=1
− [ŷi log yi + (1− ŷi) log(1− yi)] . (20)

The loss function for image selection measures the difference between the pre-

dicted image and the ground truth image (ŷi) using cross-entropy. Including

image selection with text summary generation seeks to improve the coherence

between the text summary and the visual summary, thereby enhancing the

accuracy of the ultimate image summary. Consequently, the image selected

at the final step of the text summary generation is regarded as the definitive

image summary.

4.3.3. Image-Text Matching (ITM)

Unlike generic text (e.g., news), scientific papers are longer and more

structured, containing multiple sections in which images and text within

the same section often share similar semantic. To capture the section-level

semantic alignment between image and text, we proposed the image-text

matching (ITM) task to jointly train in our model. ITM helps our model to

also consider the sectional image-text alignment information while calculat-

ing attention for both image and text. Formally, ITM is defined as follows:

yic = σ
(
Wtxt s

1 +Ws h
sim
ic +Wimg v

1
)

(21)

where hsim
ic is a similarity matrix whose element denotes the similarity be-
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tween individual section text and image representation, Wtxt, Ws and Wimg

are trainable parameters on the section representation (s1), similarity matrix

(hsim
ic ) and image representation (v1) respectively. Intuitively, at each decod-

ing timestep, in addition to the words and images in the papers, our model

also attends to the relevant section. The ITM loss is a binary cross-entropy

loss that is optimized to predict whether or not individual image-text pair

matches (i.e., came from the same paper section). We consider an image to

belong to the section(s) that has inline-mentioned it (e.g., “Fig. X describes

...”). The loss function for the ITM task is:

LITM
θ = − [ŷic log yic + (1− ŷic) log (1− yic)] (22)

where ŷic is the ground truth label (i.e., 1 for matching pair and 0 otherwise).

4.4. Joint Training

Finally, we jointly trained our CMT-Sum model with the summary gener-

ation, image selection and image-text matching. The model simultaneously

minimizes the three loss functions:

LTOTAL
θ = LGEN

θ + LIS
θ + LITM

θ (23)

5. Experimental Settings

5.1. Dataset

Due to the lack of multimodal reference in existing scientific summa-

rization datasets, the gold standard is either pure text or pure images (not

both) during the training and validation. Here, we create two new datasets
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(namely AVIATESMSMO and PubmedSMSMO) from existing scientific summa-

rization datasets to enrich the benchmarks in the SMSMO research area.

Table 1 shows our dataset statistics.

PubMedSMSMO AVIATESMSMO

Train Valid Test Train Valid Test

Num. Docs 5167 659 638 1647 205 206

Avg. Num. Words in Articles 4254.77 4225.27 4138.04 4817.20 4858.91 4853.15

Avg. Num. Sections in Articles 15.03 14.41 15.44 13.03 13.17 13.38

Avg. Num. Words in Summary 255.71 250.43 257.55 138.49 137.40 139.82

Avg. Num. Image in Articles 4.50 4.61 4.47 7.07 6.62 6.88

Table 1: Corpus statistics of our dataset.

Yang et al., [3] proposed PubMed, a scientific paper dataset whose figures

were annotated for central figure identification. In PubMed, the authors of

each paper identified a central figure that represents their papers. We take

the central figure as the graphical abstract; we also incorporate the paper

text abstract as the ground-truth summary so that the dataset now con-

tains multimodal references, making it suitable for SMSMO task. To train

our summarizer with the Image-Text Matching module (see Sec. 4.3.3), we

obtained the PDFs of individual papers in PubMed, and extracted their para-

graph/section text and images using Grobid [59] and Pdffigures [62] (resp.).

Finally, we obtained 35k paragraph text-image pairs from the dataset. We

use the train, valid and test split as provided by Yang et al. [3] (8:1:1). We

call this dataset PubMedSMSMO.

AVIATESMSMO is a modified version based on the AVIATE dataset [7],

which took the first step to study the effect of multimodal signals (i.e., pre-
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sentation videos) on paper abstract generation. In the AVIATE dataset,

presentation videos from 28 social science and computer science conferences

were collected and used to create corresponding paper abstracts (text-only).

Here, we utilize the paper sources from AVIATE to build our new dataset. We

obtained the open PDFs of individual papers and extracted their paragraph

text and images using Grobid and Pdffigures (like we did in PubmedSMSMO).

We filter out the data examples which contain no images. Then, we em-

ploy a heuristic method to generate the pseudo image selection labels for our

data. Specifically, in research articles, images that provide summary infor-

mation are often captioned with keywords like “overall, framework, overview,

etc.". Here, we leverage this property and use a list of summary-related

keywords4 to identify the key images for individual papers. We didn’t prior-

itize the keywords, and we picked the image with the caption that contains

most of the keywords (In case there is a tie, we pick the larger image5). We

compare our keyword lists with the ones generated automatically by Rapid

Automatic Keyword Extraction (RAKE) [63] and TextRank [64]. We also

compare our methods with Order-ranking and ROUGE-ranking proposed by

Zhu et al. [23], which extract GA by considering the image’s order appear-

ing in the paper and the ROUGE value between individual image captions

and the text abstract. For comparison, we take the manually-labelled key

figures in PubMedSMSMO. We compare this ground truth with the results ob-

tained from ours and other methods, achieving a top-3 accuracy of 62%, no-

4The full list of keywords are provided in Appendix A, Table A.8.
5Typically, images of greater importance are allocated more space in research articles

to accommodate the rich content they need to display [3].
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tably higher than the one obtained from the RAKE (53%), TextRank (51%),

Order-ranking (48%) and ROUGE-ranking (59%). Consequently, we use our

keyword list to obtain the key figures in AVIATESMSMO. To ensure the test

set is reliable, two volunteers are engaged for post-validation, in which they

check if the selected figures can represent the paper given its abstract. The

inter-annotator agreement amounts to 0.65 Cohen’s kappa, which denotes a

fair agreement. Using our methods, we get 2,058 data samples with pseudo

image selection labels. The data was split into train, validation, and test sets

following the 8:1:1 ratio from Atri et al. [7].

5.2. Implementation Detail

Preprocessing. We tokenized all the characters in the source paper text

and target summaries with the Longformer’s subwords tokenizer [57].

Model. In the text encoder module of our CMT-Sum model, we initialize

our embedding matrix using the word embedding of Longformer [57]. It

contains 30,522 vocabularies with an embedding dimension of 4,096. The

paper text and summaries share the same vocabulary. The paper image

feature is extracted by the ResNet-101 encoder [56], which represents each

image by a 2048-dimensional vector. We randomly initialize all trainable

parameters using a uniform distribution within [−0.1, 0.1].

Training. During training, we configured the model batch size to 5, the

learning rate to 0.0001 and the maximum gradient norm to 1.0. Additionally,

we set the dropout ratio to 0.1. We employ an Adam [65] optimizer. The

experiments are deployed in Pytorch on an NVIDIA RTX A5000 GPU.

Testing. In the testing phase, we configured the decoding beam size as

5. The minimum and maximum decoding lengths were configured to 100
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and 300 (resp.). To avoid repetitive trigrams in the generated summaries, we

incorporated trigram blocking [66], and set the length penalty and summary

coverage penalty as 0.9 and 5 (resp.) as used by Wu et al., [67].

5.3. Baselines and Evaluation

For evaluation, we compare our model performance against different base-

lines, covering extractive and abstractive approaches, as well as unimodal and

multimodal summarization models.

Unimodal Summarization Models. Lead3 [68] is a widely used extrac-

tive baseline that adopts the first three sentences of individual documents

as their summary. TextRank [64] is an extractive baseline, which ranks sen-

tences using graph-based similarity and importance scoring. LexRank [69]

is a graph-based extractive baseline. It takes individual sentences as nodes,

their (sentence) similarity as edges and extracts the key sentences by their

similarity scores. Here, we apply TextRank and LexRank on the paper text

and image captions to extract the key text and the representative image

(TextRank (with caption) and LexRank (with caption)). Mem-

Sum [70] is an extractive method that learns summarization as a multi-step

episodic Markov Decision Process (MDP) with awareness of the extraction

history. GoSum [71] is a graph-based summarization method which encodes

the sentence states of the source documents using graph neural networks

(GNNs), followed by training an agent’s action based on its state in a rein-

forcement learning environment to evaluate and select sentences and produce

an extractive summary. Lodoss [72] develop a determinantal regularizer to

optimize the segmentation and summarization tasks in parallel, ensuring a

set of representative and diverse sentences are selected for the summary.
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Seq2Seq (RNN) [73] and Seq2Seq (Transformer) [58] are both built

upon the standard sequence-to-sequence (seq2seq) architecture. Their differ-

ence is that Seq2Seq (RNN) employed the Recurrent Neural Network (RNN)

encoder-decoder with a global attention mechanism; while the Seq2Seq (Trans-

former) use a BERT encoder and a transformer-based decoder to learn sum-

marizing text abstractively. Pointer Generator (PG) [74] extends the

standard seq2seq architecture to enable word generation from the vocabu-

lary as well as copying words directly from the source document. Long-

T5 [75] and Pegasus-X [76] are the extension of the T5 and Pegasus encod-

ing methods for handling longer input sequences; DYLE [77] is an “extract-

and-summarize” method that jointly trains an extractor to select key text

snippets and a generator to create a summary from those snippets.

Multimodel Summarization Models. Mulitmodal Transformer (con-

catenate) extend our Seq2Seq (Transformer) model. It fuses image and

textual features by concatenating their feature vectors, and the vectors to

a transformer decoder to generate textual summaries. Multi-BART [17]

fine-tune Bart model with both the source text and figure caption for better

multimodal summarization. VG-BART [48] enhances text summarization

by integrating visual information using a vision-guided multi-head attention

mechanism within a pre-trained BART model; MAST [78] employs a hi-

erarchical trimodal attention technique, first computing pairwise attention

weights between text and other modalities, then applying second-level atten-

tion to these pairwise features. CFSum [27] propose a contribution network

that selects more important parts of images for multimodal summarization

and effectively enhances the multimodal representation for summarization.
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MSMO [18] is the first multimodal summarization model with multi-

modal output, which applies attention to combine the text-image features

for better text generation, and the coverage mechanism is used to help se-

lect representative images. MOF [23] extended the MSMO model, in which

it integrates image precision as an additional training loss. UNMHG [25]

is a unified model which leverages the large language model to both gener-

ate text summary and select GA. SITransformer [53] utilizes hierarchical

attention for capturing topically-aligned image-text features. MLASK [15]

develop a Dual-level Interaction Summarizer to generate multimodal summa-

rization. A2Summ [52] builds upon the transformer framework and learns

inter-modality and intra-modality correlations by contrastive losses.

We employ the widely-used ROUGE [79] to evaluate the generated tex-

tual summary. We follow previous works (e.g., [8, 9, 74]) by reporting the

F1 scores of ROUGE-1 (R-1), ROUGE-2 (R-2) and ROUGE-L (R-L). These

scores are computed using the pyrouge package6. Furthermore, we evalu-

ate the quality of the chosen key image using the top-1 and top-3 accuracy

metrics introduced by Yang et al. [3]. These metrics determine whether the

positive sample is correctly identified within the top-1 or top-3 positions of

the predictions.

6https://github.com/bheinzerling/pyrouge
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6. Results

6.1. Main Result

To assess the performance of CMT-Sum, we evaluate it against three types

of baselines: Text-only Models (both extractive and abstraction, SSO), Mul-

timodal Summarization Models (with text and image as input only, MSSO),

and Multimodal Summarization with Multimodal Output Models (with text

and image as input and output, MSMO). Table 2 shows the results. Here,

we can obtain several findings. First, we see a better result from the abstrac-

tive models, demonstrating the paper summaries in our proposed dataset

are generally abstractive in nature; and merely extracting a few sentences

from the paper as the summary may not be as effective in capturing the key

information.

Second, for the MSSO methods, MAST and CFSum integrate multimodal

information through hierarchical attention and word/phrase-image attention

(resp.), leading to a more pronounced enhancement in text summarization

performance. In contrast, some MSSO methods (e.g., VG-BART, Multi-

modal Transformer and Multi-BART) perform even worse than the text-only

methods when the integration of image semantic information into the text

modal is not effectively accomplished. This implies that simply using an

attention sub-layer (VG-BART) or concatenating text/image/caption fea-

tures (Multimodal Transformer and Multi-BART) are not effective in fusing

multimodal information, resulting in a decline in performance. In our CMT-

Sum, the CFM (Cross Fusion Module) computes multi-modal fusion with

self-attention and cross-attention as described in eq. 7, enabling our model

to capture both intra-modality (i.e., word and section) and inter-modality
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(text and image) correlations within multimodal data. Furthermore, our

model benefits from second-level attention computed by eq. 11 and 12, al-

lowing it to selectively attend to relevant word- or section-level semantics for

summarization, leading to achieving the best text summary performance.

Finally, for the MSMO methods, we notice that our image selection task

in eq. 20 can improve both the visual and textual representation and deepen

the degree of multi-modal alignment, resulting in improved accuracy of text

summary. Differing from other methodologies that select the key image solely

from the text (e.g., UNMHG) or the image hidden state (e.g., MSMO), our

image selector chooses the key image by considering the multi-modal seman-

tic alignment representation, computed through the fusion gate in eq. 19.

This approach enables our model to pick the key image that captures the

essence of both the source text and the source image. Compared to MLASK

and MOF, our model incorporates three joint tasks, as computed in eq. 15,

20 and 22, which effectively learns integrated features from the multimodal

content. Notably, the selection of the key image considers both the generated

text summary and its alignment. Moreover, the quality of the text summary

is influenced by the quality of the image selection. This mutual dependency

not only enhances the performance of image summaries but also drives im-

provements in text summaries. Consequently, our model attains superior

performance in both tasks.

6.2. Ablation Study

We conducted ablation experiments to assess the impacts of the two fun-

damental modules in our CMT-Sum: the Cross Fusion Module (CFM) and

the Multi-Objective Generator (MOG). Correspondingly, two sets of models

33



Model
PubmedSMSMO AVIATESMSMO

R-1 R-2 R-L Acc@1 Acc@3 R-1 R-2 R-L Acc@1 Acc@3

Extractive Models

(Text only)

Lead3 [80] 16.30 1.01 1.03 - - 21.71 0.71 11.21 - -

LexRank (with caption) 21.21 5.02 12.01 28.46 69.81 25.91 4.42 12.12 13.17 40.48

TextRank (with caption) 17.88 6.03 11.34 28.77 65.09 16.31 5.82 13.94 17.56 47.80

Lodoss [72] 19.14 6.33 16.37 - - 23.18 6.42 19.43 - -

MemSum [70] 21.88 7.3 17.76 - - 28.66 6.08 16.27 - -

GoSum [71] 20.45 8.28 18.25 - - 16.46 6.45 14.93 - -

Abstractive Models

(Text only)

Seq2Seq (RNN) 20.36 3.89 15.12 - - 28.82 4.78 14.22 - -

Seq2Seq (Transformer) 22.12 4.13 17.21 - - 33.48 5.75 15.7 - -

PG [74] 23.67 4.28 16.62 - - 29.27 4.85 14.72 - -

Long-T5 [75] 28.28 7.88 16.23 - - 30.41 6.95 16.18 - -

Pegasus-X [76] 27.46 8.15 16.28 - - 26.14 6.75 15.26 - -

DYLE [77] 30.12 6.85 20.61 - - 29.05 6.47 25.99 - -

Multimodal Summarization Models

(Text+Image, input only)

Multimodal Transformer (concatenate) 24.85 4.73 20.35 - - 34.35 6.33 16.24 - -

Multi-BART [17] 24.54 6.37 23.04 - - 24.54 5.83 21.2 - -

VG-BART [48] 27.94 7.84 20.83 - - 24.29 6.55 23.71 - -

MAST [78] 28.42 7.91 25.21 - - 25.12 6.89 24.21 - -

CFSum [27] 30.75 8.14 28.67 - - 28.15 7.06 26.26 - -

Multimodal Summarization Output Models

(Text+Image, input and output)

MSMO [18] 25.32 4.95 21.12 28.62 72.96 32.05 6.17 24.89 21.46 56.09

MOF [23] 26.75 5.62 23.86 29.12 69.41 32 6.49 17.84 51 67.21

UNMHG [25] 28.7 6.36 25.88 25.49 51.29 30.74 6.58 25.51 50.24 56.1

SITransformer [53] 26.5 5.55 23.2 26.9 69.7 24.9 5.57 24.44 57.24 72.5

A2sum [52] 29.57 7.56 26.71 30.29 73.06 28.59 7.2 25.62 59.51 78.78

MLASK [15] 31.96 8.72 27.62 27.55 70.07 33.13 6.58 25.83 60 85.37

CMT-Sum (Ours) 36.67 9.5 33.8 33.03 74.05 35.55 7.23 32.19 68.63 86.08

Table 2: The ROUGE and Accuracy scores of all baselines compared on our PubmedSMSMO

and AVIATESMSMO datasets. The best scores are bold.

PubmedSMSMO AVIATESMSMO

Fusion Tasks R-1 R-2 R-L Acc@1 Acc@3 R-1 R-2 R-L Acc@1 Acc@3

W/o CFM

T 23.05 4.21 21.21 - - 26.86 4.02 24.09 - -

I - - - 26.56 70.6 - - - 58.21 78.23

T+I 31.05 5.98 28.52 27.97 72.64 33.07 5.92 29.72 61.46 80.73

T+I+M 33.19 6.86 30.83 28.98 73.7 33.71 6.08 30.05 62.93 82.41

With CFM

T 24.37 4.99 22.56 - - 29.11 4.64 25.9 - -

I - - - 28.12 71.23 - - - 62.12 80.63

T+I 36.4 8.72 33.51 29.45 73.7 35.49 7.21 32.08 65.37 83.66

T+I+M (ours) 36.67 9.5 33.8 33.03 74.05 35.55 7.23 32.19 68.63 86.08

Table 3: Ablation study on our modules in CMT-Sum, Cross Fusion Module (CFM) and

Multi-Objective Generator (MOG). We compare them with (CFM) or without CFM (w/o

CFM), and their performance on training with different tasks: text generation (T), image

selection (I), text and image tasks (T+I) and text and image tasks with the image-text

matching (T+I+M).
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are designed, with CFM present or removed from the full model (W/o CFM

v.s., with CFM) and MOG performing individual tasks on text generation

(T), image selection (I), text and image tasks (T+I) and text and image

tasks with the image-text matching (T+I+M):

Table 3 presents our results. Here, we observe that our model performs

better when CFM is equipped. Using self-attention and cross-attention (as

described in eq. 7), the CFM effectively learns both the intra-modality se-

mantic and the inter-modality correlation between image and text. That

way, CFM grounds the image content on the text segments and fuses the

text information into individual images, producing an image-aware text rep-

resentation and a text-aware image representation for the text generation

and image selection tasks (resp.). In contrast, when the two types of con-

tents are combined/concatenated directly (i.e., w/o CFM), the model can

not effectively learn the modality interaction, which accordingly affects the

performance.

In our multi-task ablation experiment, we observed a notable improve-

ment in the ROUGE scores by incorporating the image selector into our

model (i.e., Task T v.s., T+I). This finding highlights the essential role of

learning the visual subtasks (in eq. 20 and 22) in enhancing the performance

of the textual subtask. Indeed, scholarly papers have diverse types of im-

ages, covering overview figures, tables, charts, etc. Such diversity introduces

noise and irrelevant information. Thus, it is not sufficient to merely fuse the

image and text, and assume that all images are beneficial for the summary

without considering the potential interference of irrelevant images. In this

regard, the inclusion of an image selector (in eq. 20) becomes crucial in ef-
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fectively filtering out noisy images and ensuring that only key images and

their relevant visual content contribute to the text summarization process. In

addition, we also need an effective matching strategy to learn a comprehen-

sive multi-modal representation. Hence, when incorporating the image-text

matcher (Task I+T+M), the model can further be enhanced to align multi-

modal information (computed as eq. 22), yielding the best overall scores in

our experiment. By combining text summarization, image selection, and

image-text matching, CMT-Sum effectively learns the multimodal semantics

in a more comprehensive manner. In the AVIATESMSMO dataset, the pseudo

image reference we construct (using the key-image heuristic) helps generate

a better text summary, which indirectly leads to the improvement of ITM

(image-text matching). In the PubmedSMSMO dataset, our full CMT-Sum

(with all modules included) outperforms others, indicating that it can ef-

fectively improve the multimodal summarization when a large-scale dataset

with real multimodal reference is available.

6.3. Module Visualization

In this part, we will demonstrate the role of our Cross Fusion Module

(CFM) and Multi-Objective Generator (MOG) in the model by evaluating

and visualizing their effects.

First, we evaluate our CFM module in ensuring a better fusion between

image and text output. Here, we compute the Euclidean Distance on the

representation of the text summary output (yt) and the image output (yi),

as follows:
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ED(text, image) =

√(
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m

∑m
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yt −

1

n
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i
yi

)2

(24)

where m and n denote the total number of text and image summaries (resp.);

yt and yi are the text and image representations produced by our CMT-Sum

model. In Table 4, we report the total Euclidean Distance for the multi-

modal summary on the train, valid and test part of the AV IATESMSMO

dataset. It is evident that via the CFM, text and image features exhibit a

relatively consistent fusion across all data subsets, and their feature distance

is shorter (i.e., more semantically similar) compared to those without CFM.

In Figure 3, we visually present the Euclidean distance measurements for the

text and image samples within the semantic space. Specifically, for the same

set of samples in the validation dataset, Figure 3a illustrates the representa-

tion of the summary text and image generated by a model lacking the CFM

module, while Fig. 3b showcases the same sample sets generated by a model

with CFM. The representation was processed with PCA for the dimension-

ality reduction to be displayed in the same semantic space. Thanks to the

self-attention and cross-attention (as computed in eq. 7), the CFM learn how

much information to integrate from multimodal source and how much infor-

mation to retain from the original modality. Consequently, it strengthens the

correlation between text and image representation, as reflected in Figure 3b.

By integrating relevant multimodal information with our CFM, the repre-

sentations of the text and image samples are closer (i.e., more semantically

similar) compared to those without CFM (Figure 3a). It suggests that CFM

effectively learn to link text and images, helping the model better understand

and process multimodal information.
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Train Valid Test

With CFM 29.52 25.64 24.85

W/o CFM 46.91 42.76 36.12

Table 4: The total Euclidean distance on the text and image samples in the

AV IATESMSMO dataset.

(a) Without CFM (b) With CFM

Figure 3: Euclidean distance measurement on a set of text and image summaries on the

validation set of AV IATESMSMO. For the same set of samples, Figure 3a show the text

and image representation without processing through the CFM modules, while Figure 3b

does. For visualization, the representation was processed using the dimensionality reduc-

tion by PCA.
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Next, we explore the effectiveness of the MOG. We take the example

shown in Figure 1 and visualize the attention maps generated from the hier-

archical attention mechanism by our Visual-aware Text Generator (in eq. 15).

The map is shown in Figure 4. It displays the weights connecting image and

text semantics at each summary generation step, demonstrating how the two

modalities complement each other. We inspect the maps generated with

both text generation and image selection performed (green row), in compar-

ison with a baseline model which only performs text generation (red row).

We randomly pick five source words that appear in the summary text to

show. From Figure 4, it can be observed that the baseline model (red row)

exhibits a more “sparse” attention distribution, where the word weights are

spread across different images (e.g., the word “pre-defined” attends across F2

and F4). Conversely, our model’s attention map focuses more on the images

corresponding to the text in that section (e.g., the word “boundary” attends

mostly on F1), thanks to the integration of the image selector. Particularly at

each decoding step, when the text generator summarises the content relating

to a particular section (e.g., Methodology), the image selector simultaneously

identifies the most relevant visual content (e.g., a schematic diagram). This

real-time, step-by-step alignment ensures the visual context closely matches

the textual content being generated. It reinforces the semantic context of the

current section and helps the text generator maintain focus on the specific

section/theme being summarized. In cases where textual content might be

ambiguous, the selected images (or attended image representation) can pro-

vide clarifying information, guiding the text generator towards more precise

language and descriptions. Later on, when the text generator moves from
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one section (or decoding step) to another, the changing image selections help

shift its focus accordingly. This adaptive mechanism ensures that the gener-

ated summary maintains relevance throughout its length. Additionally, since

the final image summary is selected based on the last decoding context, the

image summary will include complete semantics of the decoded context.

In Figure 5, we explore the effectiveness of the ITM by observing the

relevance of the section text and images shown in Figure 1 (i.e., S1 to S3

and F1 to F4). Each colour block denotes the cosine similarity between the

image-aware text representation (S1
j ) and the text-aware image representa-

tion (v1j ) of each section. The darker colour refers to a higher similarity in

the heatmap. By training with the ITM alignment loss (eq. 22), our model

learns a multi-modal semantic alignment representation for the section’s text

and image content. From Figure 5a, we can see that by aligning multimodal

relevant information with our ITM, the image-text similarity is more rela-

tively concentrated along each section (e.g., F1-S1, F2-S2) as compared to

the one without ITM (Figure 5b).
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Figure 4: Visualization of the attention map in our Visual-aware Text Generator, generated

with both text generation and image selection performed (in green row), in comparison

with a baseline model which only performs text generation (in red row). For the abstract

segment A1 to A3 we presented in Figure 1, we show five words (in blue) that appear in

the source text and their associated attention map with the images in the paper. The

baseline shows a “sparse” distribution across different images and words. In contrast, our

model shows a more concentrated distribution on related images and text corresponding

to the abstract section/theme.
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Figure 5: The heatmap demonstrates the cosine similarity among the representations of

images (F1 to F4) and sections (S1 to S3) presented in Figure 1. Map (a) is generated by

a model with ITM incorporated, whereas map (b) lacks ITM.

6.4. Human Evaluation

A human evaluation is designed to analyze the summary output from

three aspects. Informativeness (Inf) assesses whether the summary con-

tains sufficient and necessary information from the input. Coherence (Coh)

assesses whether the summarized content is presented in a coherent order.

Accuracy (Acc) assesses the correctness and clarity of the summary content.

From our AVIATESMSMO dataset, we randomly selected 50 examples gener-

ated by our comparison methods. Three graduate students volunteered to

evaluate the output. They are tasked to score each output from 0 to 5, where

0 and 5 indicate the lowest and highest scores of corresponding metrics. The

final results are averaged across subjects.

Table 5 presents the results of the human evaluation. Our CMT-Sum

achieves the highest scores in all metrics. The results indicate that summaries
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Inf Coh Acc

SSO MemSum 1.42 1.6 1.25

Long-T5 1.24 2.15 1.78

Pegasus-X 1.6 2.10 2.12

DYLE 1.11 2.14 2.01

MSSO VG-BART 1.74 2.13 2.01

MAST 1.86 2.42 2.51

CFSum 2.02 2.45 2.52

MSMO MSMO 2.34 2.41 2.51

MOF 2.71 2.52 2.67

UNMHG 2.84 2.63 2.15

SITransformer 2.81 2.02 2.14

A2sum 2.76 2.15 2.86

MLASK 2.85 2.57 2.96

CMT-Sum (ours) 3.31 3.06 3.12

Table 5: Human evaluation results of generated summary.

generated by CMT-Sum are more informative and cohesive, with high accu-

racy on both text and image information summarized. Compared with the

SSO and MSSO models with text-only output, CMT-Sum provides a relevant

image, which can include diagrams, graphs, or illustrations that complement

the textual summary, offering additional information that might not be ex-

plicitly stated in the text. Additionally, our model’s CFM Module (in eq. 7

plays a role in enhancing the integration of information across different lev-

els. Particularly, when our text generator produces each word, it can draw

upon both sectional (intra-modality) and visual (inter-modality) informa-

tion. This integration allows for a more comprehensive understanding of the

content, potentially leading to more accurate and detailed summaries. Fi-

nally, our step-by-step alignment of text generation with image selection (in
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eq. 20) helps maintain temporal coherence in the summary, which ensures

that visual references in the text accurately correspond to the content being

discussed.

6.5. Case Study and Relevance Visualization

Table 6 and 7 present the summary outputted by different models. We

also include the original abstract for reference (top line in Table 6). Ta-

ble 6 displays the text summary generated by the SSO models (Seq2seq and

DYLE) and MSSO models (MAST and CFSum). We can see that the SSO

models, which only incorporate text information, neglect some concepts that

presented in the image (e.g., the nil-aware passage extractor). In contrast,

MAST, CFSum, and our CMT-Sum all utilize multimodal input, allowing

them to consider both text and image semantics. However, MAST and CF-

Sum focus on either global or local correspondences, but not both. Particu-

larly, MAST maps the entire document and its images into a single shared

space, capturing overall themes but potentially overlooking important details.

For example, the model mentioned the “nill-aware answer extraction frame-

work” and the “evidence-decomposition”, but there is not much description

of them. On the other hand, CFSum focuses on word-/phrase-level fusion,

which good at capturing details but potentially overlooking the overall con-

text. We can see that CFSum described a lot of model detail (e.g., “matching

the first Q tokens with the second Q tokens”, which is the model details of the

nill-aware answer extractor). By comparison, our CMT-Sum designs a fusion

approach that operates at both word and section levels, incorporating intra-

text and inter-text-image fusion through a hierarchical structure. In brief,

the unimodal encoders (in eq. 2 and 3) capture the intra-modality features
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Table 6: Summary output comparison between CMT-Sum and SSO (Seq2seq and DYLE)

and MSSO (MAST and CFSum) baselines. In the comparison, valid and relevant contexts

w.r.t the ground truth are highlighted in blue, while irrelevant or incorrect contexts are

highlighted in red.
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Table 7: Summary output comparison between CMT-Sum multimodal output baselines

(MSMO, MOF, UNMHG, MLASK and ours). In the comparison, valid and relevant con-

texts w.r.t the ground truth are highlighted in blue, while irrelevant or incorrect contexts

are highlighted in red.
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separately for text and image inputs. Then, the CFM in eq. 7 fuse the inter-

modality feature of the two (feature) sets at a sectional level. Finally, with

the hierarchical attention in eq. 11 and 12, the model generates the target

summary by jointly considering both local-level features (word-specific) and

global-level features (section-specific) through a hierarchical attention mech-

anism. As can be seen in Table 7, the summary outputted by our model

incorporates both global structure (e.g., Problem scope/aim, model descrip-

tion and experiment results), as well as local detail description (e.g., describe

the purpose of the evidence aggregation).

In comparison to the text-only output, the multimodal output in Table 7

provides additional information by including a selected image along with the

text summary. This additional visual element serves to reinforce or clarify

the textual content, and vice versa, leading to better overall comprehension.

However, the effectiveness of this approach depends on the relevance of the

chosen image to the textual content. If a model selects an image that is

contextually irrelevant to the text summary, it may cause ambition and con-

fuse readers (see e.g., the output from MSMO). MSMO selects the image

summary by observing only the image’s hidden state. In contrast, our image

selector identifies the key image by considering the multi-modal semantic

alignment representation (as computed by eq. 19). The generated text pro-

vides the image encoder with richer global representations, comprising the

full semantic content of both the source image and text. Other than that,

when compared to MLASK, our model incorporates a multi-task module that

includes image-text matching, as computed in eq. 22. It enables both the text

generator and image selector to better align and more effectively learn fused
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features from the multimodal content. Particularly, the image-text matcher

improves the alignment between the visual and textual elements of each sec-

tion (see Figure 5), enabling the text generator to create summaries that are

more accurately tailored to each particular section of the source material.

From our case in Table 7, the “evidence aggregation module” overlooked in

MLASK has been covered in our summary (i.e., enforcing complete evidence

from a paragraph).

7. Conclusion

This paper introduces a new model for scientific summarization that lever-

ages cross-modality and multi-task learning techniques. Our model effec-

tively improves multimodal summary generation and the diversity of the

generated summaries, encompassing both text and image information in sci-

entific papers. The novelty of our paper lies in the finer-grained fusion of the

two modalities through our cross-fusion module, as well as the generation of

aligned multimedia summaries that capture the semantics of different modal-

ities through our multi-objective generator. This approach distinguishes our

work from existing studies in scientific NLP, which often handle modalities

independently and primarily focus on text content. Our research comple-

ments current research, which mainly builds upon text-only corpora (and

lacks multimodal semantics). Experimental results demonstrate that our

multimodal model generates summaries that are more coherent, informative,

and accurate, showcasing the effectiveness of our approach.
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Appendix A. Keywords used to identify key figures in AVIATESMSMO

Keywords

flow chart, flowchart, illustration, general block diagram, system structure,

system architecture, overall, overview, framework, workflow, structure,

flow, demonstration, graphic visualization, graphical (model), theoretical model

Table A.8: Here, we present the keywords that we use to identify the key figures in our

AVIATESMSMO dataset. The key image of individual papers is determined by the number

of keywords each image caption contains. If there is a tie, the image that appears earlier

in the paper will be taken. Images which can not align with any keywords are excluded.
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