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Abstract—Recently, considerable research efforts have been
directed toward multimodal optimization problems in consumer
electronics. Given the existence of multiple equally significant
solutions applicable to diverse scenarios, simultaneously locating
these optima is essential. Utilizing multiobjective optimization
presents a promising avenue for addressing such problems, pro-
vided an effective transformation from multimodal optimization
to multiobjective optimization is established. To this end, this
study proposes an enhanced tri-objective transformation frame-
work based on a specifically designed region division and merging
strategy. Three objective functions are constructed by incorporat-
ing objective conflict and niching principles, thus enabling mul-
tiobjective optimization techniques to efficiently locate multiple
optimal solutions. Simultaneously, the proposed region division
and merging strategy facilitates the transformation process.
Initially, the decision space is partitioned into numerous small
tiles during the region division phase. Subsequently, these tiles are
progressively merged layer by layer during the merging phase,
eventually restoring the original decision space. Consequently, the
given optimization problem is decomposed into a series of simpli-
fied tri-objective optimization subproblems, facilitating a smooth
transition from exploration of potential regions to exploitation
of promising candidate solutions. Experiments conducted on 20
benchmark multimodal optimization problems demonstrate that
the proposed method achieves superior performance compared
to 14 state-of-the-art algorithms in terms of simultaneously
identifying multiple optimal solutions.

Index Terms—Region division and merging, transformation,
multiple optimal solutions, multiobjective optimization, differen-
tial evolution

I. INTRODUCTION

Many consumer electronics applications, such as the au-
tonomous path planning [1], [2] and traveling salesman prob-
lems [3], [4], exhibit the coexistence of multiple optimal (or
near-optimal) solutions. For example, consumers may prefer
to have multiple optimal solutions available before making
purchasing decisions for electronic products [5]. Offering
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representative solutions to support consumers’ final decision-
making can be framed as a multimodal optimization problem
(MMOP), which is formulated as follows! [6], [7]:

minimize  g(x), 0
subeject to  x = (x1,...,xp) € X,

where ¢g(x) is the objective function, D denotes the number of
decision variables, x is a decision vector in the decision space
X, and X can be defined as follows:

X =TI, il )

where [; and wu; are the lower and upper bounds of z;, respec-
tively. Ideally, an algorithm should simultaneously identify all
global optima in a single run, providing consumers with well-
informed choices for final decision-making.

While population-based evolutionary algorithms (EAs) have
been successfully applied to optimization problems in con-
sumer electronics [8]-[12], they predominantly focus on mod-
eled search problems with a similar formulation but only
a single optimal solution. MMOPs in consumer electronics,
however, pose distinct challenges. On the one hand, the
number of solutions found must be as large as possible to
accommodate consumers’ diverse preferences. On the other
hand, the quality of the identified solutions must meet the
practical demands of electronics. Consequently, additional
multimodality-specific mechanisms need to be specifically
designed to address MMOPs in consumer electronics.

Niching [13]-[15], one of the most popular methods for
handling multimodality, has been widely used in various
EAs. During the evolutionary progress, niching achieves two
goals [13]. First, it adaptively partitions the entire population
into different subpopulations, and second, it maintains sub-
population diversity to exploit different promising candidate
solutions. Various niching strategies have been developed, such
as clearing [16], crowding [17], fitness sharing [14], [18], and
clustering [19]. In the early studies, the performance of these
methods largely relies on the niching threshold parameter.
However, different MMOPs typically have different numbers
of local and global optima, making the threshold parameter
problem-dependent and/or user-defined [13]. Thus, these early
techniques commonly face the issue of parameter sensitivity.
Recent studies have focused on parameter-free or parameter-
insensitive improvements for niching, such as adaptive esti-
mation distribution [20], [21], topological speciation [22], and

'The maximization problem can be equivalently transformed into a mini-
mization problem by multiplying by a negative value.
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affinity propagation clustering [23]. Leveraging adaptive and
self-adaptive strategies, these new niching methods can be less
sensitive or even insensitive to user-defined parameters.

As an alternative to niching methods, multimodality-specific
reproduction and updating operators [24]-[26] have been pro-
posed to recognize multiple optimal solutions using variable
information. Unlike conventional SOPs, which have a single
optimal solution that exclusively achieves the minimum ob-
jective function value, information solely from the objective
function of a given MMOP is insufficient to locate multiple
optima with the same objective value. To distinguish different
optima, the original reproduction and updating operations
have been redesigned to consider information from individual
variables. For example, sub-decision space information is used
in the updating operator to locally guide different individuals
toward distinct directions [25]. The neighborhood mutation
[27] utilizes local information provided by neighboring indi-
viduals to explore different decision areas.

Recently, some efforts [6], [7], [28]-[30] have been made to
solve MMOPs using multiobjective optimization, which was
originally proposed for multiobjective optimization problems
(MOPs). The similarity between MMOPs and MOPs is that
both involve a set of optimal solutions that should be located
in a single run. However, a key difference is that MMOPs
have only one objective function and thus cannot be solved by
multiobjective optimization directly. Therefore, transforming a
given MMOP into an MOP is essential. In [28], [29], [31], a
bi-objective-based transformation has been proposed. The first
objective is derived from the given MMOP, and the second
objective, serving as a diversity indicator, is based on gradient
information. Furthermore, to fully leverage multiobjective op-
timization, a novel bi-objective transformation based on objec-
tive conflict has been designed [6]. This approach rigorously
converts the multiple optimal solutions of a given MMOP
into the Pareto-optimal solutions of the transformed MOP,
thus satisfying the prerequisites for applying multiobjective
optimization.

Using multiobjective optimization to solve MMOPs reduces
the need to design new algorithms [7], as existing multiobjec-
tive optimization techniques can be suitably adapted through
appropriate modifications. Nevertheless, the successful appli-
cation of multiobjective optimization critically relies on an ef-
ficient transformation of MMOPs into MOPs. In this study, we
propose a region division and merging (RDM) strategy to fa-
cilitate a tri-objective transformation. Accordingly, we develop
a tri-objective differential evolution (TriDE) algorithm. Unlike
most prevailing approaches [7], [28], [29], [31] that transform
an MMOP into a fixed bi-objective optimization problem
(BOP), we partition the decision space into multiple tiles (sub-
decision spaces), thus transforming the original MMOP into
a set of simpler tri-objective optimization problems (TOPs).
Subsequently, the proposed TriDE algorithm systematically
explores each tile during the initial and intermediate phases to
identify potential attraction basins likely to contain promising
solutions. When the merging strategy is activated, pairs of
these tiles are progressively integrated. Finally, promising
candidate solutions identified in earlier stages undergo further
exploitation to yield high-quality final solutions. The main

advantages of the proposed TriDE algorithm are summarized
as follows:

1) Three objective functions are carefully constructed in
TriDE for the transformation of MMOPs. The first two
objectives inherit the essential objective conflicts from
bi-objective transformation to fulfill multiobjective opti-
mization requirements, while the third objective is de-
veloped from niching strategy to maintain population
diversity. Thus, TriDE effectively leverages both multi-
objective optimization and niching to identify multiple
optimal solutions.

2) An effective RDM strategy is introduced to facilitate
the transformation of MMOPs into MOPs. Initially, the
entire decision space is segmented into numerous smaller
tiles, which are gradually combined back into larger tiles
during evolution. Consequently, distinct search layers are
formed across different stages. Earlier layers, comprising
a greater number of smaller tiles, enable extensive explo-
ration of potential regions, whereas later layers, consist-
ing of fewer but larger tiles, allow focused exploitation of
promising candidate solutions. This mechanism ensures
a balanced and smooth transition from exploration to
exploitation within TriDE.

3) The decision space is efficiently evaluated and partitioned
using sampling and clustering techniques. Consequently,
TriDE can subdivide decision spaces of arbitrary dimen-
sions into a designated number of sub-decision spaces
without requiring any a priori knowledge, thereby signifi-
cantly alleviating the curse of dimensionality encountered
in high-dimensional optimization scenarios.

The remainder of this paper is structured as follows. Section
IT provides the preliminaries. Section III presents a compre-
hensive description of the proposed TriDE method. Parameter
settings and experimental results are detailed in Section IV.
Finally, Section V concludes the paper.

II. PRELIMINARIES
A. Mutiobjective Optimization Problems

Without loss of generality, a multiobjective optimization
problem (MOP) can be formulated as follows:

minimize  F(x) = (f1(x),...

7fM(X))7 (3)
subeject to x € X,

where F'(x) denotes an objective vector in the objective space
Y where Y C ®M, and M denotes the number of objectives.

Since an MOP often involves at least two conflicting
objectives, it is unlikely that a solution in X exists that
minimizes all objectives simultaneously. Instead, a set of
solutions can be maintained to balance different objectives.
The goal of multiobjective optimization is to find the best
trade-offs, known as the Pareto-optimal solutions.

In multiobjective optimization, an important concept is
Pareto dominance. Given two decision vectors x; and X, in
X, x; is said to Pareto-dominate Xo, denoted by X; < Xo, if
for all ¢ € {1,..., M} such that f;(x1) < fi(x2) and there
exists ¢ € {1,..., M} such that f;(x;) < fi(X2). Furthermore,
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if no xy exists such that xo < X1, x; is called a Pareto-
optimal solution. The set of all Pareto-optimal solutions in
the objective space is known as the Pareto front.

B. Fitness Sharing

Niching [32] has been one of the most commonly used
techniques in population-based EAs to handle multimodality
and identify multiple optimal solutions. By maintaining a
diverse set of potential solutions, the evolutionary population
can simultaneously search different areas of the solution space.
Among various niching-based methods, fitness sharing [13] is
one of the most popular. Since the proposed approach, TriDE,
utilizes fitness sharing to construct a density function, we
briefly describe this technique here.

Given an individual x with fitness g(x), its shared fitness
gs(x) is calculated as follows:

gs(x) =

where m.(x) is the niche count, representing the number of
individuals with whom the fitness g(x) is shared. The niche
count is calculated as follows:

g9(x)
me(x)

; 4)

Ps
[[x — x|
c(X) = 1——0), 5
me(x) ;max( —.0) (5)
where Pg denotes the population size, || - || represents the

Euclidean distance, and o denotes the niche radius.

The principle of fitness sharing is to reduce the number
of similar individuals within a given niche. By discouraging
the presence of highly similar individuals, fitness sharing pro-
motes population diversity, enabling the evolutionary search
to effectively exploit different niches.

C. Multiobjective Optimization for MMOPs

Multiobjective optimization aims to find the best trade-
offs between objectives. Since MMOPs have only one objec-
tive function, multiobjective optimization cannot be applied
directly. Therefore, a well-designed transformation from an
MMOP to an MOP is usually required. To achieve this,
additional objective functions must be constructed. Current
transformations can generally be categorized into two classes:
1) density indicator-based and 2) objective conflict-based
transformations.

The density indicator as an additional objective function
was proposed in [29] and further developed in [28], [33]. In
this approach, a given MMOP is transformed into a BOP as
follows:

minimize  F(x) = (g(x), d(x)), ©)
subeject to x € X,

where d(x) denotes the density function, and g(x) and X have
the same formulations as in (1). Typically, d(x) uses distance-
related information to reflect the density level around x. When
d(x) is minimized, individuals occupying sparse areas have
more opportunities for exploration and exploitation, helping
the population avoid converging toward a single dominant
region.

Layer One

Stlel Jtile2 o tled ¢

tile 4

Jotile6 , tle7 v tile8 -

tile 1
original decision

space

Layer Four

Layer Three

Fig. 1. Illustration of the RDM strategy. The decision space is initially divided
into eight small tiles in the first layer, and these tiles subsequently merge back
into the original space in the last layer.

Considering the prerequisite for the coexistence of Pareto-
optimal solutions, a transformation involving two conflicting
objectives was first proposed to find multiple solutions of
nonlinear equation systems in [30]. Later, a more robust and
rigorous transformation was developed to solve MMOPs in
[6]. The general framework of such transformations can be
summarized as follows:

fi(x) = a(x) + B(z)

fa(x) =1 —a(x) +B(x)
where «(x) and 3(x) are distance-related and g(x)-related
functions, respectively. In (7), «(x) serves two purposes. First,
it introduces a complete conflict between f; (x) and f5(x), en-
abling multiobjective optimization to identify the transformed
optima. Second, it ensures that all optimal solutions of an
MMOP can be converted into Pareto-optimal solutions.

(7

minimize {

III. PROPOSED ALGORITHM
A. Motivation

In terms of similarity, both MOPs and MMOPs involve
multiple equally important optima that need to be located in
a single trial. This similarity suggests a potential advantage in
using multiobjective optimization to locate multiple optima.
However, there are notable differences between MOPs and
MMOPs. The key distinction is that the multiple optima of a
given MMOP do not exhibit a regularity property as strong as
the Pareto-optimal solutions of a standard MOP [7]. Any two
optima of an MMOP have minimal or no correlation, as these
optima are sparsely and discretely distributed across different
attraction basins. Due to these differences, if multiobjective
optimization is applied to MMOPs, some modifications are
necessary [7].

Motivated by the aforementioned similarities and differ-
ences, an RDM strategy is proposed to better facilitate the
transformation from MMOPs to MOPs. A brief illustration is
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provided in Fig. 1. In the first layer, the entire decision space
is divided into a number of tiles, with each tile containing
a population that undergoes multiobjective optimization. Al-
though the tiles do not exhibit a regularity property like the
Pareto-optimal solutions, each divided tile has an opportunity
to be explored. As the evolutionary process progresses, these
small tiles gradually merge into larger ones. In Fig. 1, smaller
tiles, along with their corresponding subpopulations in the first
two layers, become larger in the last two layers. Consequently,
promising candidate solutions identified in earlier stages can
be further refined with a larger population size to obtain high-
accuracy solutions.

B. The Improved Tri-objective Transformation

In TriDE, a given MMORP is transformed into a tri-objective
optimization problem (TOP), formulated as follows:

f1(x) = a(x) + B(x)

minimize fo(x) =1—a(x)+6(x) ,
fa(x) = me(x) + B(x) ®)
subeject to x = (x1,...,2p) € X,

First, inspired by the successful applications in [6], [30], the
transformation based on objective conflict is incorporated.
Second, niching is another widely used method to enhance
population diversity and identify multiple optimal solutions.
Thus, the above tri-objective transformation is developed.
Borrowing from (7), the distance-related function «(x) and
g(x)-related function 8(x) in (8) are constructed as follows:

SE =l —, S5 ke =)

alx) = =1,...,Pg
= P : P J
jnax, 3552 ke =)l — _ming 5052, [(x —xg)ll
)

g(x) — _min_ g(x.)

Blx) =¢ max_ g(x¢) — min_ g(x¢)’

=1,...,Pg t=1,...,Pg

¢ = 40D (CurrentF Es/MaxFEs)®, (10)

where r = (ry,...,7p) represents a sample point randomly
initialized within the decision space X, || - | denotes the
Euclidean distance, Ps is the number of sample size (also
the population size), and ¢ is a scaling factor borrowed from
[6]. Here, CurrentF Es denotes the current number of fitness
evaluations used.

It can be shown (Appendix A in the supplementary material)
that fi1(x) completely conflicts with f>(x), resulting in a
mapping from the multiple optima of the original MMOP
to the Pareto-optimal solutions of the transformed TOP. An
example is depicted in Fig. S.1 (supplementary material).
In Fig. S.1(a), six optimal solutions are located in distinct
attraction basins with varying fitness landscapes. These six
optimal solutions are marked as black points in the decision
space. Correspondingly, any attraction basin containing an
optimal solution (peak) is colored dark crimson, while basins
without an optimal solution are shown as lighter areas. From
(8) and (9), it can be theoretically deduced that the relationship
between fi(x) and fa(x) is f2(x) = 1 — fi1(x) + 28(x). Specif-
ically, if x is an optimal solution, then S(x) = 0. Fig. S.1(b)

illustrates that the transformed six optimal solutions fall onto
the line segment f>(x) = 1 — f1(x), with each solution being
nondominated.

In contrast to constructing two conflicting objectives, the
purpose of f3(x) is to distribute the transformed Pareto-optimal
solutions more sparsely on the PF. For instance, in Fig. S.1(b),
although points A and B are nondominated, their transformed
positions are so close that it is challenging for the evolu-
tionary search to precisely distinguish them simultaneously.
To address this issue, the third objective f3(x), derived from
the fitness sharing of the niche count m.(x), is constructed.
However, f3(x) does not provide Pareto dominance in relation
to either fi(x) or f2(x). As shown in Fig. S.1(c), when only
fi(x) and f3(x) are considered, the relative distance between A
and B is larger than that in Fig. S.1(b), yet Pareto dominance
is absent. When all three objectives, fi(x), f2(x), and fs3(x),
are considered, the red points are transformed into optimal
solutions in the three-dimensional objective space shown in
Fig. S.1(d). Points A and B on the PF formed by fi(x)
and f»(x) are the projection points of A’ and B’, indicating
that A’ and B’ remain nondominated. Overall, compared
with the transformation based solely on fi(x) and f2(x), the
nondominated solutions transformed by f(x), f2(x), and f3(x)
exhibit a greater degree of distinctness, enhancing solution
identification.

C. RDM Strategy

Although the multiple optima of an original MMOP are
transformed into the Pareto-optimal solutions of (8), a regular-
ity property that could stimulate evolutionary search to locate
additional nondominated solutions does not exist. Constructing
such regularity is challenging. Therefore, an RDM strategy
is proposed from an alternative perspective to enhance the
evolutionary search capability.

1) Region Division: Often, the multiple optima of a given
MMOP are sparsely distributed across distinct attraction
basins, with each optimal solution effectively serving as an
isolated point. To enhance the evolutionary search capability,
we divide the decision space into multiple sub-decision spaces
and then apply multiobjective optimization within each divided
sub-decision space. By enforcing search within each of these
divided spaces, bias toward any specific promising candidate
solution can be largely mitigated, providing greater opportu-
nity to explore potential attraction basins. In this study, we
use the K-means clustering method to partition the decision
space. The pseudo-code for region division is presented in
Algorithm 1.

In the region division, Latin hypercube sampling (LHS)
[34], [35] is employed to generate Ps sample points within
the decision space X. After applying the K-means clustering
method, these Ps sample points are grouped into Np clus-
ters; that is, the kth tile consists of p* sample points, with
Ps =Yo7 pk. Here p®,k =1,..., Nr is determined automat-
ically by the K-means clustering method. Consequently, the
entire decision space is divided into Ny sub-decision spaces
X% k=1,..., Nz in the first layer.

The proposed region division offers two main advantages.
First, the decision space is partitioned in a principled manner
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Fig. 2. Tllustration of the proposed RDM. The two-dimensional decision space is divided into four sub-decision spaces (T, T12, T13, and Tfl) at the initial
stage, then gradually merges into two sub-decision spaces (T21 and T22) and finally into the original decision space at the middle and later stages, respectively.
Throughout this process, fitness landscapes of varying sizes are shown. Black points indicate multiple optimal solutions.

Algorithm 1: Region Division

Algorithm 2: Region Merging

Input:
e Pg: the sample size;
e Np: the number of tiles for the first layer.
Division:
o Use Latin hypercube sampling to generate Pg sample points in the
decision space X;
e Archive these Pg sample points as P = {r1,...,Trpg};
o Use the K-means clustering algorithm to group the Pg sample
points {ry, ..., rpg} into Nr tiles
le = {rlzu')rplsc}zk: 1’7NT7

Output: {T},...,T""} and P

using a clustering algorithm, allowing variable information
from sample points to be more easily integrated into evolution-
ary operations compared to relying solely on objective function
values. For instance, when assigning individuals to tiles, the
minimal Euclidean distance between a given individual and
sample points can be readily computed. Second, by employing
sampling and clustering, decision spaces of any dimensionality
can be divided into a specified number of sub-decision spaces,
making the region division approach flexible and adaptable to
high-dimensional spaces.

2) Region Merging: Without a priori knowledge, we assume
that each sub-decision space is equally important for explor-
ing potential attraction basins. However, some sub-decision
spaces do not contain any optimal solutions. If computational
resources are continuously allocated to these sub-decision
spaces, optimal solutions in other sub-decision spaces may
remain undiscovered, leading to resource inefficiency.

To address this issue, an effective approach is to merge
certain sub-decision spaces into larger ones, allowing the
inclusion of optima within the expanded search area. To
balance division and merging, a fixed number of layers (Ny) is
defined. Between any two layers, there is an evolutionary span

Input:
e Nrp:the number of tiles in the current layer s;
o Ts: the set of N tiles {T%, ... JTNTY,
Merging:
SetT?, , ={},i=1,...,Np/2;
for i=1 to Nr/2 do
Randomly choose two tiles T)* and T from T;
LetT! , =T UT™
Remove 77 and T}* from T;
end

Np/2
Output: {T},,... ,TS+T1/ }

of Es generations. During each span, every sub-decision space
is independently explored and exploited using multiobjective
optimization. After every Eg generations, the region merging
strategy, presented in Algorithm 2, is applied to randomly merge
one tile with another.

3) Working Principle: To further illustrate the working
principle of RDM, we first assume that the entire decision
space X has been divided into N tiles in the sth layer, where
each tile T? covers a small sub-decision space X, yielding
X = XX...X:...UXN7. The transformed TOP in X?¥ is
therefore defined as:

minimize F(x) = (f1(x), f2(%), fa(x)),
x=(21,...,zp) € X¥
X¥ is the kth sub-decision
space in the sth layer.

an

subeject to

where fi(x), f2(x), and f3(x) have the same formulations as
in (8).

An example of region division is illustrated in Fig. 2, where
a two-dimensional decision space is divided into four sub-
decision spaces: T3, T2, T2, and TZ. Since each of these
sub-decision spaces represents only a small part of the entire
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decision space, the transformed TOP within each of T3, T2,
T3, and T? is simpler than that in (8), at least in terms
of the search space. As shown in Fig. 2, compared to the
entire decision space, each sub-decision space has at most two
optimal solutions and a simplified fitness landscape, making
it easier for multiobjective optimization to locate solutions. In
this case, unlike in a standard MOP, the strong regularity typi-
cally needed to find multiple optimal solutions is unnecessary
within such a small sub-decision space.

Prior to merging, the sub-decision space T}, as shown in
Fig. 2, does not contain any optimal solutions. After Es gener-
ations, T} and T2 merge into the larger tile Ty, similarly, T
and T} merge into T2,. As a result, computational resources
previously allocated to explore T2 can now be utilized to
search for the two optimal solutions within T2, ,. It is worth
noting that, to provide a clearer view of the landscape in Fig. 2,
tiles are shown as equal-sized and regularly shaped; however,
they are, in fact, irregular, as seen in Fig. 1. Moreover, for ease
of understanding, the merging strategy pairs adjacent tiles in
Figs. 1 and 2.

D. Complete Algorithm TriDE

Algorithm 3: TriDE

Input:
e Pg: the population size and the sample size;
e Np: the number of layers.

Initialization:

o Calculate the number of tiles N, evolution span Eg, and
sub-population size Ng;
Execute Algorithm 1;

Evaluate Pg individuals according to (1);
Partition Pg individuals into N sub-populations P, ..
e Sett=0.

Evolutionary Progress:

while termination is not satisfied do

t=t+1;

For each Py, generate its offspring population @Q; with
SHADE [36];

Evaluate Q; according to (1);

P=P..UPrn; UQ1...UQny:

Set P, :P2:~-~:PNT =Q1=Q2:...=QNT =0

for i=1 to 2Pg do

Calculate f1(x;), f2(x;), and f3(x;) according to (8);

Find the sample point r; nearest to the ith individual;

Get the corresponding tile ¢ to which r; belongs;

Assign the ith individual to sub-population P;

'aPNT;

end
for i=/ to Nt do
if the size of P; exceeds Ng then
Apply improved non-dominated sorting and
‘ crowding distance sorting to truncate the size;
else if the size of P; is less than Ng then
Randomly select Ng — | P;| solutions from other
‘ sub-populations to meet the size;
end
end
if t equals Eg then
t=0;
Execute Algorithm 2;
Nr = Np/2;
N, s = 2N, S

end

end
Output: P1 ... Py,

Copy the Pg sample points from Algorithm 1 as initial individuals;

In this section, the complete TriDE approach is described
in detail.

At each generation, TriDE maintains the following informa-
tion:

1) Ps individuals: {x;|j =1,..., Ps};

2) Nr tiles in the sth layer: {T%,...,TNT};

3) Nr sub-populations: {Pi,..., Pn,};

4) Three objective function values of (8) for each individual:

{(1(x9), f2(x7), fa(x5))l5 =1, Ps}
The pseudo-code of TriDE is outlined in Algorithm 3.

In the initialization phase, Algorithm 1 is executed to divide
the decision space X into Nr sub-decision spaces. The Ps
sample points from Algorithm 1 are directly used as initial
individuals in Algorithm 3. Subsequently, the values for each
sub-population size Ns and evolution span Eg are obtained
through the calculations shown in Section IV-B. Generally,
each sub-population may not precisely match Ng individuals,
so individuals from overloaded sub-populations are randomly
selected and moved to under-populated ones to balance the
sizes.

During the evolutionary progress, SHADE [36] is performed
on each of the Nr sub-populations to generate Ng offspring,
resulting in Ps = Ns - Nr new offspring. Next, we combine
Ps individuals and Ps offspring to calculate their objective
function values according to (8), and re-assign them to Np
sub-populations based on their proximity to the nearest sample
points (using minimal Euclidean distance). If a sub-population
exceeds Ng individuals, improved non-dominated sorting [6]
and crowding distance sorting [37] are applied to truncate the
size; if it is below Ng, individuals from other sub-populations
are randomly selected to reach the target size. After every Fs
generations, Algorithm 2 is executed to merge Nr tiles into %
larger ones for the next layer.

Generally, TriDE starts with several sub-populations and
ends with a single population. Key details include:

« In Algorithm 1, Ps sample points are randomly generated

and remain fixed during the evolutionary process. These
Ps sample points are copied as initial individuals to
evolve in subsequent generations. Sample points serve
two roles in TriDE: first, they construct the «(x) of
(9), which forms the basis of objective conflicts in the
proposed transformation (8). Second, these sample points
are used to estimate and partition the entire decision
space.

« Algorithm 1 is only executed in the initialization phase.
Once Nr initial tiles are obtained, subsequent layers are
generated by Algorithm 2. An example with Ny = 8 is
shown in Fig. 1. After each Es generations, the number
of tiles is halved, and in the final Es generations, only
one tile (the original decision space) remains.

o The nearest neighbor classification, shown in Fig. S.2
(supplementary material), is used to allocate individuals
to different sub-decision spaces. Based on the Euclidean
distance, the sample point closest to a given individual
determines its tile assignment, as each sample point
belongs to a unique cluster.

o Without a priori knowledge, dividing the entire decision
space by a definitive formulation is challenging. However,



JOURNAL OF KX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021

individuals from different sub-decision spaces evolving in
a collaborative manner help maintain population diversity
[38]. Consequently, TriDE does not restrict individuals
and their offspring to remain solely within their desig-
nated sub-decision spaces.

E. Computational Time Complexity

Regarding the computational complexity of TriDE, its pri-
mary components in each generation are considered as follows:
1) Calculating the values of f1(x) and f2(x) and applying the
nearest neighbor classification method for each individual
x requires summing the Euclidean distances between x
and Ps sample points. The time complexity for this part

is O(P3).

2) Calculating the f3(x) value for each individual requires
the Euclidean distance between x and every other indi-
vidual. This also has a time complexity of O(P3).

3) For non-dominated sorting, the worst-case time complex-
ity is O(Np - N2).

4) For crowding distance sorting, the worst-case time com-
plexity is O(Nr - Ns - log(Ng)).

In this study, Ps = Nr - Ns, implying that O(P2) > O(Nr -
N32). Additionally, the K-means clustering algorithm, applied
during the initialization phase, has a time complexity of O(P3).
Considering all components, the overall time complexity of
TriDE can be simplified to O(P3).

IV. EXPERIMENTAL STUDY
A. Test Suite and Performance Metrics

In this section, the performance of locating multiple optimal
solutions is evaluated on the test suit used in the IEEE
WCCI/CEC 2020 competition for multimodal optimization
[39]. This suite consists of 20 benchmark functions, catego-
rized into three groups. The first group includes 10 widely used
benchmark functions (F} to Fio)); the second group comprises
five low-dimensional composition test functions (Fi1 to Fis);
and the third group contains five high-dimensional compo-
sition test functions (Fis to F2). The maximum number of
fitness evaluations (MaxFEs) and characteristics of these 20
functions are presented in Table S.I and Fig. S.3 (supplemen-
tary material).

The performance of the proposed TriDE algorithm is com-
pared with 14 state-of-the-art algorithms based on two eval-
uation criteria: peak ratio (PR) and success rate (SR). For a
specified accuracy level ¢, PR represents the average ratio of
acceptable global optima identified by the algorithm across all
trials, while SR indicates the proportion of successful trials to
total trials. In this paper, PR and SR values are calculated at
five accuracy levels: e = 1.0x 107, 1.0x 1072, 1.0 x 1073,1.0 x
107*, and 1.0 x 1075, The methods for calculating PR and SR
are detailed in Appendix B (supplementary material).

B. Parameter Settings

TriDE introduces only two parameters: the population size
Ps and the number of layers Nr. In this study, Ps is set to

640, and Ny, is set to max{2, | 34255 |} “adjusted according to

MaxzFFEs. The minimum value for Ny, is set to 2, with larger
values for N, allowed as the number of fitness evaluations
increases. The way to set niche radius o is given in Appendix
C. The evolutionary span Es between layers and the number
of tiles Nr for the first layer are automatically set to Es =
MaxFEs/(Ps - Nr) and Ny = 2V, respectively. TriDE is
evaluated using 25 independent trials for each test function.

C. Comparison with State-of-the-Art Multimodal Optimization
Algorithms

The performance of the proposed TriDE algorithm is com-
pared with the 14 state-of-the-art algorithms, categorized as
follows:

o Recent multimodal optimization algorithms published in
prominent journals within the past five years, includ-
ing FBK-DE [40], NBNC-PSO-ES [41], PMODE [42],
ESPDE [43], NDC-DE [44], DIDE [45], ANDE [46],
NetCDEwmwmors [47], and AED-DDE [20].

« Winners of recent IEEE CEC competitions on multimodal
optimization, including NEA2 [48], NMMSO [32], RS-
CMSA-ES [49], and RS-CMSA-ESII [50], with RS-
CMSA-ESII being the winner of the latest competition.

« A recent evolutionary algorithm based on multiobjective
optimization, namely EMO-MMO [7], specifically devel-
oped for multimodal optimization.

Parameter settings for these algorithms follow the recommen-
dations provided in their respective references.

The PR and SR values obtained by TriDE across five accu-
racy levels are reported in Table S.II (supplementary material).
Since the accuracy level ¢ = 1.0 x 107* is commonly used
for the discussions of comparisons and analyses [46], PR and
SR values at this accuracy level are compared with those of
other state-of-the-art algorithms in Table S.III (supplementary
material). In Table S.III, the best PR values for each test
function are highlighted in beldface. Symbols +, ~, and —
indicate that TriDE’s PR value is better than, equal to, or worse
than that of the compared algorithm, respectively.

Table S.III shows that TriDE attains the best performance
on 14 test functions, consistently identifying all global peaks
(SR=1.000) on 13 functions at the accuracy of ¢ = 1.0 x 107,
These two numbers are both the best compared with those of
other state-of-the-art algorithms. Specifically, TriDE achieves
PR and SR values of 1.000 for functions F; to Fio, indicating
that TriDE reliably finds all optimal solutions in this first
group of test problems. Among the five low-dimensional
composition functions (Fi; to Fis) in the second group, TriDE
perfectly solves problems Fi; to Fi3, while maintaining robust
performance on Fi4 and Fis. Additionally, based on PR and
SR values at other accuracy levels (see Table S.II), TriDE
demonstrates notable stability, as PR and SR values remain
largely unaffected even at stricter accuracy (¢ = 1.0 x 107°).

Furthermore, TriDE outperforms eight compared algorithms
on at least six test functions, and two compared algorithms
cannot outperform TriDE on any function. Compared to the
13 single-objective-based algorithms, TriDE exhibits marked
advantages, particularly on functions F», Fg, and Fy, which
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feature numerous global optima. Despite the inclusion of var-
ious niching methods and diversity enhancement mechanisms,
none of these comparative algorithms consistently identify all
global optima across 25 consecutive trials. Compared to the
bi-objective optimization-based algorithm EMO-MMO, TriDE
demonstrates substantial improvement on the last ten test
functions, outperforming EMO-MMO on seven of them.

Fig. S.3 presents the fitness landscape and the candidate
solutions obtained by TriDE on ten selected test functions.
The fitness landscapes of these functions, displayed in two- or
three-dimensional diagrams, reveal insights into the different
attraction basins for local and global optima. As shown in
Fig. S.3, despite complex fitness landscapes with numerous
peaks and uneven distributions of global optima, TriDE ef-
fectively locates all optimal solutions at high accuracy levels,
indicating a balanced capability for exploration and exploita-
tion on these functions.

In summary, the comparative analyses and statistical eval-
uations clearly demonstrate the robust and consistent perfor-
mance of the proposed TriDE algorithm in identifying multiple
optimal solutions across the benchmark test suite.

D. Component Analysis

Since the performance of TriDE is highly dependent on
the RDM strategy and tri-objective transformation, empirical
experiments were conducted to evaluate their influences.

1) Influence of Tri-objective Transformation: Unlike the
commonly used bi-objective transformation for locating multi-
ple optima, TriDE incorporates an additional density function
f3(x) to further enhance population diversity. To assess the
effectiveness of fs5(x), we developed a variant, denoted as
TriDE-1, which excludes f3(x) from (11), thus relying solely
on the two objective functions fi(x) and f2(x) in combination
with the RDM strategy. Experimental results for TriDE-1 are
presented in Table S.IV (supplementary material).

For the first 10 test functions (F; to Fip), both TriDE and
TriDE-1 consistently found all optimal solutions across 25
independent trials. However, for the remaining 10 test func-
tions (Fi1 to Fy), the performance of TriDE-1 deteriorated
significantly. Overall, TriDE did not lose to TriDE-1 on any
test function. Two points can be drawn from this comparison.
First, while f3(x) does not conflict with fi(x) and fa2(x), it
does not compromise the Pareto dominance introduced by
the conflicting objectives fi(x) and f2(x). Second, the density
function f5(x) aids the evolutionary search by improving the
distinction between candidate solutions. As noted in [45],
composite test functions have complex fitness landscapes and
a greater number of local optima. Therefore, with only fi(x)
and f2(x), the transformed global and local optima could have
narrow regions, as depicted in Fig. S.1(b). The inclusion of the
density function increases the distance between candidate so-
lutions. Based on the comparison between TriDE and TriDE-1,
this added separation proves beneficial for evolutionary search
in distinguishing different individuals during the optimization
process.

In conclusion, the density function is highly effective in the
proposed transformation for handling multimodality.

2) Influence of RDM Strategy: To evaluate the effectiveness
of the RDM strategy, the transformation (8) rather than (11) is
applied directly to the entire decision space in this subsection.
This variant is denoted as TriDE-2.

Empirical results for TriDE-2 are summarized in Table S.V
(supplementary material). The performance of TriDE-2 sig-
nificantly declines across most test functions, including two
relatively simple functions, Fy and Fy. In contrast, TriDE
demonstrates superior competence over TriDE-2 on the test
suite, especially in handling the last 10 composition test
functions. Additionally, PR values obtained by TriDE-2 are
0.220, 0.167, 0.125, and 0.125 on functions Fi7; to Fhg,
respectively, indicating that TriDE-2 fails to consistently locate
multiple optima and ultimately converges toward a single
optimal solution in each trial.

From these comparisons, it can be inferred that TriDE-2 is
ineffective in seeking multiple optima on high-dimensional test
functions. This poor performance is likely due to an inability to
explore the uneven distribution of attraction basins within the
decision space. In contrast, TriDE achieves a higher accuracy
level in locating multiple optimal solutions, underscoring the
effectiveness of the RDM strategy in balancing exploration
and exploitation.

3) Influence of the Way to Merge Two Tiles: In practice,
unlike the illustration in Fig. 2, the boundaries of the divided
tiles are often irregular, and the sequence of merging tiles
is complex, especially in high-dimensional decision spaces.
An example is given in Fig. S.2. When the tile estimated by
blue points merges with any one of its adjacent tiles, the other
two tiles remain nonadjacent. In TriDE, the merging operation
is simplified by randomly selecting two tiles to merge. To
investigate the impact of this simplification, two alternative
merging operations are designed. The first utilizes the K-means
clustering algorithm directly. When merging is activated, %
tiles for the next layer are generated by K-means clustering
instead of unifying two tiles. The second approach uses the
centroid of each tile to find the nearest neighboring tile for
merging. Details can be found in Algorithm S.1 (supplementary
material). Accordingly, two variants, namely TriDE-KM and
TriDE-NN, were developed for the first and second merging
operations, respectively.

Experimental results obtained by TriDE, TriDE-KM, and
TriDE-NN are presented in Table S.VI (supplementary mate-
rial). The results show that the different merging operations
achieve nearly the same performance. For the first 13 test
functions, the performance is identical, and for the last 7
high-dimensional test functions, the K-means clustering-based
merging operation slightly outperforms the others. As the num-
ber of variables increases, the spatial relationships between
tiles become more complex. For example, one tile may be
adjacent to multiple tiles, as illustrated by the blue domain
in Fig. S.2. When TriDE and TriDE-NN are applied to the
four tiles in Fig. S.2, no matter which two tiles are selected to
merge, the remaining two will have a separation after merging.
In contrast, TriDE-KM can reasonably generate “ new tiles
using K-means clustering, resulting in better-partitioned sub-
decision spaces that benefit evolutionary search. However, the
time complexity of the K-means clustering algorithm is O(P3),
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meaning that TriDE-KM requires more execution time than
TriDE.

Considering both performance and execution time, TriDE is
adopted in this paper.

E. Parameter Analysis

1) Sensitivity of the Population Size: The sensitivity of
population size (Ps) has been investigated in this section.
Three variants, namely TriDE-3, TriDE-4, and TriDE-5, were
developed with Ps values set to 384, 480, and 768, respec-
tively. Table S.VII (supplementary material) summarizes the
empirical results of PR and SR values obtained by these
variants.

For TriDE-3 and TriDE-4, Ps is smaller than that of TriDE,
allowing for a comparatively larger number of generations
to evolve. In contrast, TriDE-5 initiates a larger population
size, resulting in a shorter evolutionary process. Table S.VII
shows that TriDE and its three variants (TriDE-3, TriDE-
4, and TriDE-5) achieve similar performance on the first 15
test functions (Fy to Fis), while the performance of TriDE-3,
TriDE-4, and TriDE-5 is noticeably lower than that of TriDE
on the last five high-dimensional test functions (Fis to Fbo).

During the initialization phase, Ps individuals are equally
distributed across N tiles, so each tile contains = ~ individu-
als. If £ = is too small, the sub-population lacks sufficient indi-
Vlduals fo adequately explore the corresponding sub-decision
space at the initial stage, potentially causing some attraction
basins to be overlooked. Conversely, if Ps is set too high,
the generation count (#¢£"E=) becomes low, leaving the sub-
population with too few generations to fully exploit promising
solutions within the attraction basins found. Accordingly, the
poor performance of TriDE-3 and TriDE-4 can be attributed
to insufficient individuals for exploring each tile in the initial
and middle stages, while TriDE-5 lacks sufficient evolutionary
generations to exploit attraction basins in the later stage.

Based on the above discussion, it is observed that Ps = 640
achieves a balanced trade-off between exploration and ex-
ploitation across the 20 multimodal test functions, and is thus
recommended for TriDE.

2) Sensitivity of the Number of Sample Points: In our
proposed approach, sample points are used to construct the
conflicting objectives fi(x) and f>(x) and to estimate the
decision space for division. A larger number of sample points
can better estimate the decision space, resulting in improved
division from the K-means clustering algorithm. However, if
the number of sample points is too large, the decision space
becomes densely populated with sample points, causing them
to lose their role as effective reference markers for constructing
conflicting objectives. To ascertain the sensitivity of sample
size, four variants, namely TriDE-6, TriDE-7, TriDE-8, and
TriDE-9, were developed with 400, 600, 700, and 800 sample
points, respectively.

According to the empirical results presented in Table S.VIII
(supplementary material), the number of sample points mainly
impacts performance on high-dimensional composition test
functions Fig to Fao. For low-dimensional composition test
functions Fi; to Fis, the performance difference between

TriDE and its variants (TriDE-6 to TriDE-9) is minimal. For
instance, TriDE-8 with 700 sample points achieves PR values
of 0.98, 0.860, and 0.730 on Fis, Fi4, and Fis, respectively,
which are similar to the performance of TriDE. For high-
dimensional composition test functions Fis to Fs, TriDE,
TriDE-6, and TriDE-7, with the number of sample points is set
to 500, 400, and 600, respectively, achieve the best PR values
on three test functions. In contrast, TriDE-8 and TriDE-9,
with 700 and 1000 sample points, respectively, exhibit slightly
lower performance.

Based on these comparisons, a moderate number of sample
points—around 500—is more suitable for TriDE in constructing
conflicting objectives and effectively sampling the decision
space for division.

FE. Application of TriDE to Real-world MMOPs

To validate the practical applicability of the proposed
TriDE algorithm, four real-world MMOPs-the multiple steady
states problem (P1), molecular conformation problem (P2),
robot kinematic problem (P3), and interval arithmetic problem
(P4)—are selected from nonlinear equation systems [51]. For
comparative evaluation, two recent multimodal optimization
algorithms, DIDE and ANDE, published in reputable journals
within the past five years, along with HillVallEA19 [52] and
RS-CMSA-ESII, the winners of the most recent IEEE CEC
and GECCO competitions, respectively, are chosen. The max-
imum number of function evaluations (MaxFEs) and accuracy
level parameters are configured according to [51]. Detailed
comparison results in terms of peak ratio (PR) between TriDE
and these four algorithms for the selected real-world MMOPs
are presented in Table S.IX (supplementary material). Symbols
+, ~, and — respectively indicate whether the PR values
obtained by TriDE are better, similar, or worse compared to
those of the referenced algorithms.

As indicated in Table S.IX, TriDE outperforms all compared
multimodal optimization algorithms on three out of the four
selected real-world MMOPs. Specifically, on problem P1, only
RS-CMSA-ESII achieves performance comparable to TriDE,
while TriDE significantly outperforms the other algorithms.
For problem P3, both RS-CMSA-ESII and TriDE demonstrate
excellent performance, with PR and SR values equal to 1.000,
surpassing DIDE, ANDE, and HillVallEA19. Regarding prob-
lem P4, nearly all evaluated algorithms achieve satisfactory
results with PR and SR values of 1.000.

In summary, the proposed TriDE algorithm demonstrates
superior performance over four state-of-the-art algorithms on
selected real-world MMOPs, affirming its strong practical
applicability.

V. CONCLUSION

In this study, a novel RDM-based multiobjective evolution-
ary approach, termed TriDE, is proposed to efficiently locate
multiple optimal solutions. TriDE transforms a given MMOP
into a TOP, subsequently solving the transformed TOP through
multiobjective optimization. In this framework, the multiple
global optima of the original MMOP are identified as the
Pareto-optimal solutions of the transformed TOP. Since the
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multiple optimal solutions are discretely distributed, an RDM
strategy is introduced to balance exploration and exploitation
throughout the evolutionary process. Under the region division
strategy, the entire decision space is partitioned into numerous
tiles to promote exploration within each sub-decision space.
In the merging strategy, additional computational resources
are allocated to exploit discovered attraction basins, thereby
achieving candidate solutions with high accuracy.

The performance of the proposed TriDE algorithm is eval-
uated on 20 benchmark test functions and compared against
14 state-of-the-art multimodal optimization algorithms. TriDE
achieves optimal performance on 13 out of the 20 test
functions and demonstrates significant improvements over the
compared algorithms on most functions. Additional analy-
ses validate the effectiveness of the proposed tri-objective
transformation and the RDM strategy in identifying multiple
optimal solutions. Furthermore, the applicability of TriDE is
illustrated through experiments conducted on selected real-
world MMOPs.

Future research will focus on improving the performance of
TriDE on more complicated MMOPs and further expanding
the application of TriDE to more complex real-world scenar-
ios.
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Fig. S.1. Schematic illustration of the proposed tri-objective transformation. Black points indicate six optimal solutions. Blue and red points represent

candidate solutions in the bi-objective and tri-objective transformations, respectively. (a) The fitness landscape of a specific MMOP. (b) Bi-objective
transformation under fj(x) and f>(x). (c) Bi-objective transformation under fi(x) and f3(x). (d) Tri-objective transformation.



Algorithm S.1: Nearest Neighbor Tile Merging

Input:
e Nr: the number of tiles in the current layer s;
. . N
o C;: the set of centroid of Ny tiles {csl,...,csT} ) /* The initial centroid of each tile can be obtained by

K-means clustering algorithm in the initialization phase. */
o Ty: the set of Ny tiles {T}',..., T'T}.
Merging:
Set T., ={},i=1,...,Np/2;
while 7 is not empty do
Set Dg = {},
for i=1 to |T;| do
for j=i+1 to |T;| do
Calculate the Euclidean distance D;; between ¢; and c;;
Put Dij into Dyg;
end
end
Find the minimum value from Dy and its corresponding tiles m and n;
Let T! , =T"UTH,

f+1 o c)71+cn
— 8 AN
Let ¢ | = =53

Remove T}" and 7' from T;

end

Ny /2 ; Np /2
Output: {7}1+1w~~7Ts+T1/ 1, {c’SH,...,cSL/ }
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Fig. S.2. Illustration of the merging strategy operation. The triangular domain is divided into four tiles, estimated by orange, blue, green, and red points. The
tile estimated by blue points is adjacent to the other three tiles, while any two of the three tiles estimated by orange, green, and red points are nonadjacent.



TABLE S.I. BASIC PROPERTIES OF BENCHMARK FUNCTIONS IN THE IEEE CEC’2013 TEST SUITE

Function D | Number of global optima | Number of local optima r MaxFEs

Fi: Five-Uneven-Peak Trap 1 2 3 0.01 | 5.0E+04
F: Equal Maxima 1 5 0 0.01 | 5.0E+04

F3: Uneven Decreasing Maxima 1 1 4 0.01 | 5.0E+04
F,;: Himmelblau 2 4 0 0.01 | 5.0E+04

Fs: Six-Hump Camel Back 2 2 2 0.5 5.0E+04
Fg: Shubert 2 18 many 0.5 2.0E+05

F5: Vincent 2 36 0 0.2 2.0E+05

Fg: Shubert 3 81 many 0.5 4.0E+05

Fy: Vincent 3 216 0 0.2 4.0E+05

Fio: Modified Rastrigin 2 12 0 0.01 | 2.0E+05
Fi1: Composition Function 1 2 6 many 0.01 | 2.0E+05
Fi,: Composition Function 2 2 8 many 0.01 | 2.0E+05
Fi3: Composition Function 3 2 6 many 0.01 | 2.0E+05
Fi4: Composition Function 3 3 6 many 0.01 | 4.0E+05
Fi5: Composition Function 4 3 8 many 0.01 | 4.0E+05
Fie: Composition Function 3 5 6 many 0.01 | 4.0E+05
Fi7: Composition Function 4 5 8 many 0.01 | 4.0E+05
Fig: Composition Function 3 10 6 many 0.01 | 4.0E+05
Fi9: Composition Function 4 10 8 many 0.01 | 4.0E+05
Fo: Composition Function 4 20 8 many 0.01 | 4.0E+05
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optimal solutions.

TABLE S.II. PEAK RATIO AND SUCCESS RATE OBTAINED BY TRIDE AT FIVE ACCURACY LEVELS

Accuracy 1.0E-01 1.0E-02 1.0E-03 1.0E-04 1.0E-05
Level PR SR PR SR PR SR PR SR PR SR
F 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000
2 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000
B 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000
F, 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000
Fs 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000
Fs 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000
I 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000
23 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000
23 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000
Fio 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000
Fip 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000
Fio 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000
Fi3 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000
Fiy 0.8600 | 0.1600 | 0.8600 | 0.1600 | 0.8600 | 0.1600 | 0.8533 | 0.1200 | 0.8467 | 0.0800
Fis 0.7500 | 0.0000 | 0.7500 | 0.0000 | 0.7500 | 0.0000 | 0.7500 | 0.0000 | 0.7500 | 0.0000
Fis 0.6667 | 0.0000 | 0.6667 | 0.0000 | 0.6667 | 0.0000 | 0.6667 | 0.0000 | 0.6667 | 0.0000
Fi7 0.6800 | 0.0000 | 0.6800 | 0.0000 | 0.6800 | 0.0000 | 0.6800 | 0.0000 | 0.6800 | 0.0000
Fig 0.6667 | 0.0000 | 0.6667 | 0.0000 | 0.6667 | 0.0000 | 0.6667 | 0.0000 | 0.6667 | 0.0000
Fig 0.4850 | 0.0000 | 0.4850 | 0.0000 | 0.4850 | 0.0000 | 0.4850 | 0.0000 | 0.4850 | 0.0000
Fo 0.2400 | 0.0000 | 0.2400 | 0.0000 | 0.2400 | 0.0000 | 0.2350 | 0.0000 | 0.2000 | 0.0000
Average 0.867 0.658 0.867 0.658 0.867 0.658 0.867 0.656 0.864 0.654




TABLE S.III. PEAK RATIO AND SUCCESS RATE OBTAINED BY TRIDE AND THE OTHER 14 ALGORITHMS

e=1 0E-04 FBK-DE NBNC-PSO-ES PMODE ESPDE NDC-DE
PR SR PR SR PR SR PR SR PR SR
F 1.000 =~ 1.000 1.000 ~ | 1.000 1.000 ~ | 1.000 1.000 ~ | 1.000 1.000 ~ | 1.000
I3 1.000 =~ 1.000 1.000 ~ | 1.000 1.000 ~ | 1.000 1.000 ~ | 1.000 1.000 ~ | 1.000
F 1.000 =~ 1.000 1.000 ~ | 1.000 1.000 ~ | 1.000 1.000 ~ | 1.000 1.000 ~ | 1.000
Fy 1.000 =~ 1.000 1.000 ~ | 1.000 1.000 ~ | 1.000 1.000 ~ | 1.000 1.000 ~ | 1.000
Fs 1.000 =~ 1.000 1.000 ~ | 1.000 1.000 ~ | 1.000 1.000 ~ | 1.000 1.000 ~ | 1.000
Fs 0.990 + 0.820 1.000 ~ | 1.000 1.000 ~ | 1.000 1.000 ~ | 1.000 | 0.999 + | 0.980
F 0.813 + 0.000 0.967 + | 0.140 | 0.672 + | 0.000 | 0.963 + | 0.360 | 0.881 + | 0.000
Fg 0.824 + 0.000 0.808 + | 0.000 | 0.616 + | 0.000 | 0.880 + | 0.000 [ 0.941 + | 0.000
Fy 0.425 + 0.000 0.540 + | 0.000 | 0.324 + | 0.000 | 0.729 + | 0.000 | 0.458 + | 0.000
Fio 1.000 =~ 1.000 1.000 ~ | 1.000 1.000 ~ | 1.000 1.000 ~ | 1.000 1.000 ~ | 1.000
Fip 1.000 =~ 1.000 1.000 ~ | 1.000 1.000 ~ | 1.000 1.000 ~ | 1.000 1.000 ~ | 1.000
Fip 0.935 + 0.480 1.000 ~ | 1.000 1.000 ~ | 1.000 | 0.930 + | 0.560 | 0.941 + | 0.520
Fi3 1.000 =~ 1.000 1.000 ~ | 1.000 | 0.953 + | 0.720 | 0.793 + | 0.080 1.000 ~ | 1.000
Fig 0.907 — 0.460 0.847 + | 0.100 | 0.800 + | 0.000 | 0.727 + | 0.000 | 0.833 + | 0.160
Fis 0.730 + 0.000 0.738 + | 0.000 | 0.750 ~ | 0.000 | 0.730 + | 0.000 | 0.753 — | 0.000
Fie 0.707 — 0.000 0.723 — | 0.000 | 0.667 ~ | 0.000 | 0.667 ~ | 0.000 | 0.667 ~ | 0.000
Fi7 0.630 + 0.000 0.718 — | 0.000 | 0.405 + | 0.000 | 0.685 — | 0.000 | 0.633 + | 0.000
Fig 0.667 ~ 0.000 0.667 ~ | 0.000 | 0.500 + | 0.000 | 0.660 + | 0.000 | 0.667 ~ | 0.000
Fio 0.520 — 0.000 0.538 — | 0.000 | 0.245 + | 0.000 | 0.455+ | 0.000 | 0.412 + | 0.000
Py 0.450 — 0.000 0.483 — | 0.000 | 0.250 — 0.000 | 0.265 — | 0.000 | 0.355 — | 0.000
+ (TriDE is better) 7 5 8 9 8
~ (TriDE is equal) 9 11 11 9 10
— (TriDE is worse) 4 4 1 2 2
e=1.0E-04 DIDE ANDE NEA2 NMMSO NetCDEwmmops
’ PR SR PR SR PR SR PR SR PR SR
F 1.000 ~ 1.000 1.000 ~ | 1.000 1.000 ~ | 1.000 1.000 ~ | 1.000 1.000 ~ | 1.000
I 1.000 ~ 1.000 1.000 ~ | 1.000 1.000 ~ | 1.000 1.000 ~ | 1.000 1.000 ~ | 1.000
F 1.000 ~ 1.000 1.000 ~ | 1.000 1.000 ~ | 1.000 1.000 ~ | 1.000 1.000 ~ | 1.000
Fy 1.000 ~ 1.000 1.000 ~ | 1.000 1.000 ~ | 1.000 1.000 ~ | 1.000 1.000 ~ | 1.000
Fs 1.000 =~ 1.000 1.000 ~ | 1.000 1.000 ~ | 1.000 1.000 ~ | 1.000 1.000 ~ | 1.000
Fs 1.000 ~ 1.000 1.000 ~ | 1.000 | 0.950 + | 0.380 | 0.992 + | 0.880 1.000 ~ | 1.000
F 0.921 + 0.040 0933 + | 0.176 | 0914 + | 0.040 1.000 ~ | 1.000 | 0.947 + | 0.255
F 0.692 + 0.000 0.944 + | 0.078 | 0.240 + | 0.000 | 0.899 + | 0.020 | 0.999 + | 0.902
F 0.571 + 0.000 0.512 + | 0.000 | 0.581 + | 0.000 | 0978 + | 0.120 | 0.511 + | 0.000
Fio 1.000 =~ 1.000 1.000 ~ | 1.000 | 0.988 + | 0.860 1.000 ~ | 1.000 1.000 ~ | 1.000
Fip 1.000 =~ 1.000 1.000 ~ | 1.000 | 0.960 + | 0.760 | 0.990 + | 0.940 | 0.984 + | 0.902
Fia 1.000 =~ 1.000 1.000 ~ | 1.000 | 0.840 + | 0.160 | 0.993 + | 0.940 | 0.904 + | 0.471
Fi3 0.987 + 0.920 0.686 + | 0.000 | 0.957 + | 0.740 | 0983 + | 0.900 | 0.667 + | 0.000
Fia 0.773 + 0.020 0.667 + | 0.000 | 0.807 + | 0.060 | 0.720 + | 0.000 | 0.667 + | 0.000
Fis 0.748 ~ 0.000 0.632 + | 0.000 | 0.718 + | 0.000 | 0.632 + | 0.000 | 0.630 + | 0.000
Fie 0.667 ~ 0.000 0.667 =~ | 0.000 | 0.673 — 0.000 | 0.660 + | 0.000 | 0.667 ~ | 0.000
Fi7 0.593 + 0.000 0.397 + | 0.000 | 0.695 — 0.000 | 0.468 + | 0.000 | 0.480 + | 0.000
Fig 0.667 ~ 0.000 0.654 + | 0.000 | 0.667 ~ | 0.000 | 0.650 + | 0.000 | 0.667 ~ | 0.000
Fio 0.543 — 0.000 0.363 + | 0.000 | 0.667 — 0.000 | 0.450 + | 0.000 | 0.461 + | 0.000
F 0.355 — 0.000 0.248 — | 0.000 | 0.360 — 0.000 | 0.172 4+ | 0.000 | 0.380 — | 0.000
+ (TriDE is better) 6 9 10 13 10
~ (TriDE is equal) 12 10 6 7 9
— (TriDE is worse) 2 1 4 0 1
e=1.0E-04 RS-CMSA-ES RS-CMSA-ES RS-CMSA-ESIT AED-DDE EMO-MMO TriDE
’ PR SR PR SR PR SR PR SR PR SR
F 1.000 ~ 1.000 1.000 ~ | 1.000 1.000 ~ | 1.000 1.000 =~ | 1.000 1.000 1.000
F, 1.000 ~ 1.000 1.000 ~ | 1.000 1.000 ~ | 1.000 1.000 =~ | 1.000 1.000 1.000
F; 1.000 ~ 1.000 1.000 ~ | 1.000 1.000 ~ | 1.000 1.000 =~ | 1.000 1.000 1.000
Fy 1.000 ~ 1.000 1.000 ~ | 1.000 1.000 =~ | 1.000 1.000 =~ | 1.000 1.000 1.000
Fs 1.000 ~ 1.000 1.000 ~ | 1.000 1.000 =~ | 1.000 1.000 =~ | 1.000 1.000 1.000
Fs 0.999 + 0.980 1.000 =~ | 1.000 1.000 =~ | 1.000 1.000 =~ | 1.000 1.000 1.000
F 0.998 + 0.920 1.000 ~ | 1.000 | 0.838 + | 0.039 1.000 =~ | 1.000 1.000 1.000
Fy 0.875 + 0.000 0.997 + | 0.760 | 0.747 + | 0.000 1.000 =~ | 1.000 1.000 1.000
Fy 0.734 + 0.000 0.990 + | 0.140 | 0.384 + | 0.000 | 0.950 + | 0.000 1.000 1.000
Fio 1.000 ~ 1.000 1.000 ~ | 1.000 1.000 ~ | 1.000 1.000 ~ | 1.000 1.000 1.000
Fii 0.997 + 0.980 1.000 ~ | 1.000 1.000 ~ | 1.000 1.000 ~ | 1.000 1.000 1.000
Fip 0.948 + 0.580 1.000 ~ | 1.000 1.000 ~ | 1.000 1.000 ~ | 1.000 1.000 1.000
Fi3 0.997 + 0.980 0.993 + | 0960 | 0.686 + | 0.000 | 0.997 + | 0.980 1.000 1.000
Fa 0.803 + 0.100 0.850 + | 0.100 | 0.667 4+ | 0.000 | 0.733 + | 0.060 0.853 0.120
Fis 0.745 + 0.000 0.750 ~ | 0.000 | 0.637 + | 0.000 | 0.595 + | 0.000 0.750 0.000
Fie 0.667 ~ 0.000 0.833 — | 0.000 | 0.667 ~ | 0.000 | 0.657 + | 0.000 0.667 0.000
Fi7 0.695 — 0.000 0.750 — | 0.000 | 0.375 + | 0.000 | 0.335 + | 0.000 0.680 0.000
Fig 0.667 ~ 0.000 0.667 ~ | 0.000 | 0.654 + | 0.000 | 0.327 + | 0.000 0.667 0.000
Fig 0.508 — 0.000 0.703 — | 0.000 | 0.375 + | 0.000 | 0.135 + | 0.000 0.485 0.000
F 0.468 — 0.000 0.618 — | 0.000 | 0.250 — 0.000 | 0.080 + | 0.000 0.235 0.000
+ (TriDE is better) 9 4 9 9 —
~ (TriDE is better) 8 12 10 11 —
— (TriDE is better) 3 4 1 0 —




TABLE S.IV. EFFECTIVENESS INVESTIGATION TO DENSITY OBJECTIVE

THDE TADE-1
e=LOE-0d —p—T—SR T PR | SR

A 1.000 | 1.000 | 1.000 | 1.000
B 1.000 | 1.000 | 1.000 | 1.000
B 1.000 | 1.000 | 1.000 | 1.000
s 1.000 | 1.000 | 1.000 | 1.000
s 1.000 | 1.000 | 1.000 | 1.000
Te 1.000 | 1.000 | 1.000 | 1.000
B 1.000 | 1.000 | 1.000 | 1.000
F 1.000 | 1.000 | 1.000 | 1.000
Fo 1.000 | 1.000 | 1.000 | 1.000
Fro 1.000 | 1.000 | 1.000 | 1.000
I 1.000 | 1.000 | 0.960 | 0.760
Fis 1.000 | 1.000 | 0.990 | 0.920
Fis 1.000 | 1.000 | 0.973 | 0.840
Fia 0.853 | 0.120 | 0.807 | 0.060
Fis 0.750 | 0.000 | 0.748 | 0.000
Fie 0.667 | 0.000 | 0.667 | 0.000
Fiy 0.680 | 0.000 | 0.635 | 0.000
Fis 0.667 | 0.000 | 0.667 | 0.000
Fio 0.485 | 0.000 | 0.425 | 0.000
P 0.235 | 0.000 | 0.180 | 0.000
Average 0.867 | 0.656 | 0.852 | 0.629

TABLE S.V. EFFECTIVENESS INVESTIGATION TO RDM

TriDE TriDE-2
e=L.OB-04 5T SR [ PR | SR
Fi 1.000 1.000 | 1.000 1.000
)23 1.000 1.000 | 1.000 1.000
F3 1.000 1.000 | 1.000 1.000
Fy 1.000 1.000 | 0.740 | 0.320
Fs 1.000 1.000 | 1.000 1.000
Fy 1.000 1.000 | 1.000 1.000
F 1.000 1.000 | 1.000 1.000
F 1.000 1.000 | 1.000 1.000
Fy 1.000 1.000 | 0.990 | 0.160
Fio 1.000 | 1.000 | 1.000 | 1.000
iy 1.000 1.000 | 0.667 | 0.000
Fi» 1.000 1.000 | 0.750 | 0.000
Fi3 1.000 1.000 | 0.667 | 0.000
Ian 0.853 | 0.120 | 0.667 | 0.000
Fis 0.750 | 0.000 | 0.480 | 0.000
Fie 0.667 | 0.000 | 0.653 | 0.000
Fi7 0.680 | 0.000 | 0.220 | 0.000
Fig 0.667 | 0.000 | 0.167 | 0.000
Fig 0.485 | 0.000 | 0.125 | 0.000
F> 0.235 | 0.000 | 0.125 | 0.000
Average 0.867 | 0.656 | 0.713 | 0.424




TABLE S.VI. EFFECTIVENESS INVESTIGATION ON DIFFERENT MERGING OPERATIONS

TrDE THRDE-KM TADE-NN
e=1.0E-04 \—pp SR PR SR PR SR

I3 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000
2 1.000 | 1.000 | 1.000 | 1.000 | 1000 | 1.000
2 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000
s 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000
s 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000
Fe 1.000 | 1.000 | 1.000 | 1.000 | 1000 | 1.000
2 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000
Fy 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000
R 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000
Fro 1.000 | 1.000 | 1.000 | 1.000 | 1000 | 1.000
o 1.000 | 1.000 | 1.000 | 1.000 | L1000 | 1.000
Fia 1.000 | 1.000 | 1.000 | 1.000 | 1000 | 1.000
Fis 1.000 | 1.000 | 1.000 | 1.000 | 1000 | 1.000
Fia 0.853 | 0.120 | 0.867 | 0.200 | 0.867 | 0.200
Fis 0.750 | 0.000 | 0.750 | 0.000 | 0.750 | 0.000
Fie 0.667 | 0.000 | 0.667 | 0.000 | 0.667 | 0.000
I 0.680 | 0.000 | 0.675 | 0.000 | 0.645 | 0.000
Fis 0.667 | 0.000 | 0.667 | 0.000 | 0.667 | 0.000
Fio 0.485 | 0.000 | 0.490 | 0.000 | 0475 | 0.000
Fro 0235 | 0.000 | 0.250 | 0.000 | 0.235 | 0.000
Average | 0.867 | 0.656 | 0.868 | 0.660 | 0.865 | 0.660

TABLE S.VII. EFFECT INVESTIGATION TO DIFFERENT POPULATION SIZE

e=1.0E-04 TriDE TriDE-3 TriDE-4 TriDE-5
PR SR PR SR PR SR PR SR
F 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000
I3 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000
2 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000
Fy 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000
Fs 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000
Fs 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000
Iz 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000
F 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000
Fy 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000
Fio 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000
Fiq 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000
Fi 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 0.995 | 0.960
Fi3 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000
Fia 0.853 | 0.120 | 0.867 | 0.200 0.880 | 0.320 | 0.840 | 0.040
Fis 0.750 | 0.000 | 0.725 | 0.000 | 0.750 | 0.000 | 0.750 | 0.000
Fie 0.667 | 0.000 | 0.667 | 0.000 | 0.667 | 0.000 | 0.667 | 0.000
Fiy 0.680 | 0.000 | 0.630 | 0.000 | 0.645 | 0.000 | 0.670 | 0.000
Fig 0.667 | 0.000 | 0.653 | 0.000 | 0.667 | 0.000 | 0.667 | 0.000
Fio 0.485 | 0.000 | 0.340 | 0.000 | 0.405 | 0.000 | 0.460 | 0.000
Fy 0.235 | 0.000 | 0.110 | 0.000 | 0.170 | 0.000 | 0.185 | 0.000
Average 0.867 | 0.656 | 0.850 | 0.660 | 0.859 | 0.666 | 0.861 | 0.650




TABLE S.VIII. EFFECT INVESTIGATION ON DIFFERENT NUMBER OF REFERENCE POINTS

e=1.0B-04 TriDE TriDE-6 TriDE-7 TriDE-8 TriDE-9
PR SR PR SR PR SR PR SR PR SR
F 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000
F 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000
F 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000
In 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000
Fs 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000
Fs 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000
F 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000
2 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000
F 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000
Fio 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000
Fip 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000
Fiz 1.000 | 1.000 | 1.000 | 1.000 | 0.995 | 0.960 | 1.000 | 1.000 | 1.000 | 1.000
Fi3 1.000 | 1.000 | 0.973 | 0.840 | 0.980 | 0.280 | 0.980 | 0.280 | 1.000 | 1.000
Fia 0.853 | 0.120 | 0.833 | 0.000 | 0.840 | 0.000 | 0.860 | 0.160 | 0.720 | 0.000
Fis 0.750 | 0.000 | 0.730 | 0.000 | 0.750 | 0.000 | 0.730 | 0.000 | 0.745 | 0.000
Fis 0.667 | 0.000 | 0.667 | 0.000 | 0.667 | 0.000 | 0.667 | 0.000 | 0.667 | 0.000
Fi7 0.680 | 0.000 | 0.480 | 0.000 | 0.690 | 0.000 | 0.540 | 0.000 | 0.620 | 0.000
Fig 0.667 | 0.000 | 0.667 | 0.000 | 0.667 | 0.000 | 0.667 | 0.000 | 0.667 | 0.000
Fig 0.485 | 0.000 | 0.440 | 0.000 | 0.450 | 0.000 | 0.460 | 0.000 | 0.440 | 0.000
Fy 0.235 | 0.000 | 0.300 | 0.000 | 0.120 | 0.000 | 0.160 | 0.000 | 0.230 | 0.000
Average 0.867 | 0.656 | 0.855 | 0.642 | 0.857 | 0.612 | 0.853 | 0.622 | 0.854 | 0.650




APPENDIX A
PROOF OF CONFLICTS BETWEEN OBJECTIVES

With respect to the first two objectives as follows:

£, G| —_min T x| 4 — min (0
. IRl pin A i
S0 = o)+ BOX) = S e i, 2% o e+, ) -, 7 "
£ )l in, 54 )| ¢ i £(x

_1_ = T =l Lo, ‘
L) = 1= a0+ P00 = 1=~ s o= min, 5 e | v, -, 5%

we borrow the definition of Pareto-optimal solution to prove there exists conflicts between fi(x) and f2(x).
Theorem: Supposing u is an optimal solution of an MMOP, after transformation of (1), u must be a Pareto-optimal solution.
Proof: If a decision vector u is an optimal solution of the given MMOP, but it is not the Pareto-optimal solution of (1), and
then there should have a decision vector v that Pareto dominates u, which is shown as follows:
fi(v) < fi(u) fi(v) < fi(u)
(2a) or (2b)
f2(v) < fa(u) f2(v) < fa(u)
Regarding (2a), because the normalization method used in a(x) and f(x) is the min-max scaling, the range of a(x) and
B(x) is [0,1]. As u is optimal solution, the value of (u) is zero. Thus, the expression can be simplified as follows:

0<B(v) <a(u)—o(v)
3)
0<B(v) < —[a(u)—a(v)]

It is clear that the above two inequalities cannot be satisfied simultaneously, which implies that there does not exist v subject
to v Pareto dominates u, and as a result, u is Pareto-optimal solution of (1). The situation in (2b) is the same.

APPENDIX B
PEAK RATIO AND SUCCESS RATE

The Peak Ratio (PR) and the success rate (SR) are calculated as follows:

b Nigo SR — Nrs 4)

PR = Foew N

where N is the number of total trials and Njg, is the number of acceptable global optima within the corresponding accuracy
level € in the jth trial, NoG is the number of known global optima of the test function, N7g is the number of total successful
trials. If all known global optima are found in a single trial, such a trial is considered to be successful.

When determining whether the obtained solutions are acceptable or not, two kinds of the maximum permissible errors should
be satisfied. In terms of objective function value, the user-defined accuracy level € is used, and in terms of the decision space,
the r presented in Table S.I for each test function is used. The source codes of evaluation criteria can be downloaded from:
https://github.com/mikeagn/CEC2013

APPENDIX C
NICHING RADIUS CALCULATION

Suppose that each individual is the center of a D-dimensional hypersphere. Therefore, the number of these hyperspheres is
equal to the population size PS. To cover the entire decision space, each hypersphere must occupy % volume of the entire
decision space. Let 8, V, and r denote the radius of a D-dimensional hypersphere occupied by an individual, the volume of
the entire decision space, and the radius of a D-dimensional hypersphere of the entire decision space, respectively, and then &
can be calculated as follows:

V=cr? @)

where c is a constant related to the D-dimensional hypersphere.
When the Euclidean distance is applied, r can be calculated by:

(6)

where x? and xé are the upper and lower bound of x;. As the variables are 0 — 1 normalized before calculating the Euclidean

distance, i.e., x;f =1 and xﬁ» =0, r is given explicitly by:

(7



If the entire decision space is occupied by PS individuals, we may write
V = cr? = PScéP )]

which yields
VD

5= Y 9
2{/PS &
If§= YD

ps is applied, this means that there is no overlap along the diagonal of two adjacent hyperspheres. According to

the analyses and settings of the dynamic radius-niching technique [1], [2], to balance convergence and diversity, each niche

should contain at least one of its nearest neighbors. Therefore, in this paper, & is 26, i.e., /D

Dps”

REFERENCES

[1] J. Gan and K. Warwick, “Dynamic niche clustering: a fuzzy variable radius niching technique for multimodal optimisation in GAs,” in Proc. IEEE Congr.
Evol. Comput., vol. 1, 2001, pp. 215-222 vol. 1.

[2] W. Sheng, X. Wang, Z. Wang, Q. Li, and Y. Chen, “Adaptive memetic differential evolution with niching competition and supporting archive strategies
for multimodal optimization,” Inform. Sci., 2021.



	TCEPWM
	Introduction
	PRELIMINARIES
	Mutiobjective Optimization Problems
	Fitness Sharing
	Multiobjective Optimization for MMOPs

	Proposed Algorithm
	Motivation
	The Improved Tri-objective Transformation
	RDM Strategy
	Region Division
	Region Merging
	Working Principle

	Complete Algorithm TriDE
	Computational Time Complexity

	Experimental Study
	Test Suite and Performance Metrics
	Parameter Settings
	Comparison with State-of-the-Art Multimodal Optimization Algorithms
	Component Analysis
	Influence of Tri-objective Transformation
	Influence of RDM Strategy
	Influence of the Way to Merge Two Tiles

	Parameter Analysis
	Sensitivity of the Population Size
	Sensitivity of the Number of Sample Points

	Application of TriDE to Real-world MMOPs

	Conclusion
	References

	SMRDM_TriDE

